• Title/Summary/Keyword: Inductive circuit

Search Result 182, Processing Time 0.027 seconds

A Design and Performance Investigation of VCO using Inductive Reactance Variation (유도성 리액턴스 변화를 이용한 VCO의 설계 및 동작 연구)

  • Oh, S.H.;Seo, S.T.;Koo, K.W.;Lee, Won-Hui;Hur, Jung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.405-408
    • /
    • 2000
  • We designed and fabricated VCO using inductive reactance variation at 2GHz. A varactor diode is one of the main devices in VCO, which varies capacitance depending on reverse voltage. In this paper, a varactor diode is not used as a variable capacitive reactance device but as an inductive device. The circuit design and simulation have been carried out using HP-MDS. The fabricated VCO is measured using the HP 8532B spectrum analyzer and the HP 4352B VCO/PLL analyzer. The experimental result shows the phase noise -110dBc/Hz at a 100kHz offset frequency, the control voltage sensitivity of 23MHz/V and a -3.5dBm output power with a D.C. current consumption of 5.9mA. The simulation and measurements show exact agreement except with regard to the oscillation frequency. The measured oscillation frequency is lower than the simulation result because there is some parasitic inductance in the PCB layout.

  • PDF

A Study on DC Circuit Breaker using SCR Chung Hoo Park (SCR 에 의한 직류회로차단기의 과부하차단특성개선)

  • 박정후
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.14 no.2
    • /
    • pp.89-95
    • /
    • 1978
  • A SCR static breaker was studied on the Resistive and inductive load, then on the overload break circuit using operational Amplifier. In this paper, the principal circuit required for forced commutation was voltage commutation by the introduction of a parallel Capacitor. The results obtained are follows; 1. In thecondition that the tima constant of R-C circuit is larger than the turn off time of SCR, the breaker has low transient phenomena and no recovery vol age. 2. By using OP Amplifier on the load circuit, overcurrent trip point will be able to adjust to the wide range of over current. 3. In the over current qrcuit, the power loss was reduced remarkably.

  • PDF

Simulation of Power IGBT and Transient Analysis (전력용 IGBT의 시뮬레이션과 과도 해석)

  • 서영수
    • Journal of the Korea Society for Simulation
    • /
    • v.4 no.2
    • /
    • pp.41-60
    • /
    • 1995
  • The IGBT(Insulated Gate Bipolar Transistor) is a power semiconductor device that has gained acceptance among circuit design engineers for motor drive and power converter applications. IGBT devices(International Rectifier, Proposed proposed model etc) have the best features of both power MOSFETs and power bipolar transistors, i.e., efficient voltage gate drive requirememts and high current density capability. When designing circuit and systems that utilize IGBTs or other power semiconductor devices, circuit simulations are needed to examine how the devices affect the behavior of the circuit. The interaction of the IGBT with the load circuit can be described using the device model and the state equation of the load circuit. The voltage rise rate at turn-off for inductive loads varies significantly for IGBTs with different base life times, and this rate of rise is important in determing the voltage overshoot for a given series resistor-inductor load circuit. Excessive voltage overshoot is potentially destructive, so a snubber protection circuit may be required. The protection circuit requirements are unique for the IGBT and can be examined using the model. The IGBT model in this paper is verified by comparing the results of the model with experimented results for various circuit operating conditions. The model performs well and describes experimented results accurately for the range of static and dynamic condition in which the device is intended to be operated.

  • PDF

Design and Implementation of a Trigger Circuit for Xenon Flash Lamp Driver (제논 플래시 램프 구동장치를 위한 트리거 회로 설계 및 구현)

  • Song, Seung-Ho;Cho, Chan-Gi;Park, Su-Mi;Park, Hyun-Il;Bae, Jung-Su;Jang, Sung-Roc;Ryoo, Hong-Je
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.138-139
    • /
    • 2017
  • This paper describes the design and implementation of a trigger circuit which can be series connected with main pulse circuit for a xenon flash lamp driver. For generating high voltage, the trigger circuit is designed as an inductive energy storage pulsed power modulator with 2 state step-up circuit consisting of a boost converter and a flyback circuit. In order to guarantee pulse width, a resonant capacitor on the output side of the flyback circuit is designed. This capacitor limits the output voltage to protect the flyback switch. In addition, to protect another power supply of xenon flash lamp driver from trigger pulse, the high voltage transformer which can carry the full current of main pulse is designed. To verify the proposed design, the trigger circuit is developed with the specification of maximum 23 kV, 0.6 J/pulse output and tested with a xenon flash lamp driver consisting of a main pulse circuit and a simmer circuit.

  • PDF

Design Optimization of Hybrid-Integrated 20-Gb/s Optical Receivers

  • Jung, Hyun-Yong;Youn, Jin-Sung;Choi, Woo-Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.4
    • /
    • pp.443-450
    • /
    • 2014
  • This paper presents a 20-Gb/s optical receiver circuit fabricated with standard 65-nm CMOS technology. Our receiver circuits are designed with consideration for parasitic inductance and capacitance due to bonding wires connecting the photodetector and the circuit realized separately. Such parasitic inductance and capacitance usually disturb the high-speed performance but, with careful circuit design, we achieve optimized wide and flat response. The receiver circuit is composed of a transimpedance amplifier (TIA) with a DC-balancing buffer, a post amplifier (PA), and an output buffer. The TIA is designed in the shunt-feedback configuration with inductive peaking. The PA is composed of a 6-stage differential amplifier having interleaved active feedback. The receiver circuit is mounted on a FR4 PCB and wire-bonded to an equivalent circuit that emulates a photodetector. The measured transimpedance gain and 3-dB bandwidth of our optical receiver circuit is 84 $dB{\Omega}$ and 12 GHz, respectively. 20-Gb/s $2^{31}-1$ electrical pseudo-random bit sequence data are successfully received with the bit-error rate less than $10^{-12}$. The receiver circuit has chip area of $0.5mm{\times}0.44mm$ and it consumes excluding the output buffer 84 mW with 1.2-V supply voltage.

SCFL Application for Reducing Fault Current (고장전류 저감을 위한 초전도 한류기 적용)

  • Kim, Hak-Man;Kim, Jong-Yul;Choi, Sang-Bong;Moon, Young-Hwan;Sung, Ki-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.206-208
    • /
    • 2002
  • The transmission system is designed to be protected by 40 kA rate of circuit breaker fer 345 tV system and 31.5 kA and 50 kA rate of circuit breaker for 154 kV system. The short circuit current shows the tendency of exceeding circuit breaker duty for some substations and the tendency will continue if an appropriate countermeasure will not be applied to. In order to solve this problem from the viewpoint of system operation, the 154 kV system is under reconfiguration to be radial systems. This paper presents application effect of resistive and inductive SCFL (Superconducting Fault Current Limiter to Korea power systems. An algorithm of SCFL site decision is suggested.

  • PDF

A Study on the application of TVS for snubber (스너버 회로를 위한 TVS 소자의 활용 연구)

  • Lee Wan-Yun;Chung Gyo-Bum
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.227-230
    • /
    • 2002
  • The switching device in an inductive circuit is stressed by the over-voltage at the turn-off time. Thus if the peak value of the over-voltage is not properly limited, the switching device may be broken. Therefore, the snubber circuit should be added to protect the switching device from the over-voltage. The circuit designer must be familiar with the design of the snubber This paper tests the possibility that TVS instead of the conventional snubber can be applied to the protection circuit of the switching device without using the complicated design equations, and shows that the rating of TVS can be easily selected by considering only several parameters of TVS. The experimental results show the reduced switching voltage of the switching device at the turn-off time.

  • PDF

Improved Circuit Model for Simulating IGBT Switching Transients in VSCs

  • Haleem, Naushath Mohamed;Rajapakse, Athula D.;Gole, Aniruddha M.
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1901-1911
    • /
    • 2018
  • This study presents a circuit model for simulating the switching transients of insulated-gate bipolar transistors (IGBTs) with inductive load switching. The modeling approach used in this study considers the behavior of IGBTs and freewheeling diodes during the transient process and ignores the complex semiconductor physics-based relationships and parameters. The proposed circuit model can accurately simulate the switching behavior due to the detailed consideration of device-circuit interactions and the nonlinear nature of model parameters, such as internal capacitances. The developed model is incorporated in an IGBT loss calculation module of an electromagnetic transient simulation program to enable the estimation of switching losses in voltage source converters embedded in large power systems.

A study on characteristics analysis of 5kW Small-scaled Inductive Power Transfer Module for Railway Vehicles (철도차량용 5kW급 유도급전 축소 모듈의 특성 분석 연구)

  • Park, Chan-Bae;Lee, Hyung-Woo;Lee, Byung-Song;Jung, Ho-Sung;Kim, Ki-Byung;Kim, Chul-Sub
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1675-1680
    • /
    • 2011
  • Inductive power transfer module(IPTM) is a contact-less power supply device and its application range has been extended to the large capacity devices such as electric vehicles, industrial mover and railway system as well as small capacity devices such as electric toothbrush charger, celluar phone charger, and so on. For railway application, the IPTM will transfer energy while train stops at a station for around 30[sec]. Therefore, equivalent circuit parameters and coupling coefficient of IPTM are an important design factor for the high energy transfer efficiency. This paper investigates the properties of equivalent circuit parameters and coupling coefficient of U-U type IPTM and U-I type IPTM using an analytical method and experimental method. Considering the coupling coefficient of the U-U type is larger than U-I type's, the U-U type is suitable for an application which need maximum power transfer and high efficiency.

  • PDF

The Analysis of Trolley-Rail Short Circuit Current in a Single Track AT Feeding System (단선 AT 급전계통의 전차선-레일 단락 고장전류 분석)

  • Cho, Gyu-Jung;Ryu, Kyu-Sang;Lee, Hun-Do;Heo, Seung-Hun;Kim, Chul-Hwan;Kwon, Sung-Il;Kim, Cheol-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1659-1665
    • /
    • 2015
  • In general, AT(Auto-transformer) is used to improve voltage sag and inductive interference in power lines and communication lines in AC electrical railway feeding system. Especially, Korean AT feeding system has different composition compared to other countries like Japan or France, so that it has some special characteristics. However, relays imported from other countries have been used in Korea, and settings of these relays should be modified and reflect distinct characteristics of Korean AT feeding system. Therefore, study about fault analysis based on modeled AT feeding system is important. In this paper, we modeled a single track AT feeding system by using PSCAD and analyzed fault current flow in case of trolley-rail short circuit fault. Finally, we presented current magnitude of each branch expressed by boosting current of AT.