• Title/Summary/Keyword: Inductive Position Sensor

Search Result 25, Processing Time 0.031 seconds

A Theoretical Investigation for Improving Dynamic Characteristics of Inductive position sensor (유도형 변위 센서의 동적 특성 향상을 위한 이론적 고찰)

  • 신우철;홍준희;이동주
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.149-154
    • /
    • 2002
  • In a high speed spindle system, it is very important to monitor the state of rotating rotor. Particularly in active control spindle system, the position sensor must provide feedback to the control system on the exact position of the rotor. In order to monitor the state of a high speed spindle exactly, high accuracy and wide frequency bandwidth of sensors are important. This paper observes the factors which has an effect on dynamic performances of inductive position sensor.

  • PDF

An Inductive Position Sensor for Self-sensing Magnetic Suspension System (셀프센싱 자기 부상계를 위한 인덕턴스형 변위센서)

  • 윤형진;이상헌;백윤수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1038-1041
    • /
    • 2003
  • The magnetic suspension system is used in many areas, because it has great advantages. such as no friction, no noise, no lubrication and so on, but it is a unstable system in natural. It must have a feedback control with the position is measured for a stable levitation. There are an eddy-current sensor, a capacitive sensor, an inductive sensor, and an optical sensor with a laser as the sensor which measures displacements without contact. Among them, an inductive sensor is made with lower price than others. And it has a good linearity. In this paper, a magnetic circuit leads a linear equation between an input as a displacement and an output as a voltage. Experiments establish that voltage change according to displacement is linear. This paper presents the preliminary study of an inductive position sensing for self-sensing magnetic suspension system.

  • PDF

Characteristics Evaluation of Inductive Position Sensor for the State monitoring of a High Speed Spindle (고속 주축 상태 모니터링용 유도형 변위 센서의 특성 평가)

  • 신우철;홍준희;이동주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.65-68
    • /
    • 2002
  • In a high speed spindle system, it is very important to monitor the state of rotating rotor. Particularly in active control spindle system, the position sensor must provide feedback to the control system on the exact position of the rotor. In order to monitor the state of a high speed spindle exactly, High accuracy and wide frequency bandwidth of sensors are important. This paper describes the factors which has an effect on performances of inductive position sensor. We also report the experimental results that characterize the performances of the inductive position sensor.

  • PDF

The Effects of Eddy Currents and Hysteresis on the Performance of Inductive Position Sensor for Magnetic Bearings (자기베어링용 유도형 위치 센서의 성능에 미치는 와전류와 히스테레시스의 영향)

  • Noh, Myoung-Gyu;Jeong, Min-Kyoung
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.36-41
    • /
    • 2001
  • The performance of an inductive position sensor is described by the accuracy and the dynamic characteristics of the sensor. Both of these performance indices are affected by magnetic hysteresis and eddy currents. In this paper, a model of an inductive sensor is presented. This model includes the effects of hysteresis and eddy currents. Computer simulation shows that the sensitivity of the sensor is greatly affected by hysteresis and eddy currents. Repeability error increases with hysteresis and eddy currents effects. Results also show that eddy currents influence more on the sensor performance than hysteresis does. To reduce the effects of hysteresis and eddy currents, the sensor should be made out of thin laminations with high resistivity.

  • PDF

Shape Design Optimization of Inductive Position Sensor to Improve Sensitivity (유도형 변위 센서의 민감도 향상을 위한 형상 최적 설계)

  • 홍준희;이동주;신우철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.250-254
    • /
    • 2001
  • The resolution of analog sensor is determined by its sensitivity and amplitude of noise. This paper presents modeling of inductive gap sensor base on equivalent magnetic circuit and analysis of sensitivity. We can simulate static characteristic of inductive gap sensor using this model. Computer simulation show that sensor's sensitivity is affected by magnetic flux's leakage and fringing, and that they are affected by shape of sensor probe. Base on this, we designed shape of inductive position sensor probe.

  • PDF

Design of Fault-Tolerant Inductive Position Sensor (고장 허용 유도형 위치 센서 설계)

  • Paek, Sung-Kuk;Park, Byeong-Cheol;Noh, Myoung-Gyu D.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.3
    • /
    • pp.232-239
    • /
    • 2008
  • The position sensors used in a magnetic bearing system are desirable to provide some degree of fault-tolerance as the rotor position is necessary for the feedback control to overcome the open-loop instability. In this paper, we propose an inductive position sensor that can cope with a partial fault in the sensor. The sensor has multiple poles which can be combined to sense the in-plane motion of the rotor. When a high-frequency voltage signal drives each pole of the sensor, the resulting current in the sensor coil contains information regarding the rotor position. The signal processing circuit of the sensor extracts this position information. In this paper, we used the magnetic circuit model of the sensor that shows the analytical relationship between the sensor output and the rotor motion. The multi-polar structure of the sensor makes it possible to introduce redundancy which can be exploited for fault-tolerant operation. The proposed sensor is applied to a magnetically levitated turbo-molecular vacuum pump. Experimental results validate the fault-tolerance algorithm.

Modelling of a Ring-type Multi-pole Inductive Position Sensor Using Magnetic Circuit Theory (자기회로 이론을 이용한 링형 다극 유도형 변위센서의 모델링)

  • 김지미;노명규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.207-211
    • /
    • 2004
  • The performance of an inductive position sensor has approved by previous research papers. In this paper, magnetic circuit model of a ring-type multi-pole insuctive position sensor is described. The magnetic circuit model is required to design in ductive position sensor as well as draw a fault tolerance algorithm. Using the magnetic circuit theory, we derived the relationship between voltage applied and flux density in the normal air-gap. By idealizing the modulation/demodulation processes of signal processing circuit, sensor gain with respect to change of displacement is theoretically calculation using the magnetic circuit model, which validate the theoretical derivation.

  • PDF

A Study on Development of Inductive Sensor System for Locating Geared Part and Gear Position in Geared Shaft (기어 축의 기어 및 이 끝 위치 판별을 위한 유도형 센서시스템의 개발에 관한 연구)

  • Oh, Seok Gyu;Bae, Kang Yul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.3
    • /
    • pp.223-232
    • /
    • 2014
  • An inductive sensor system is proposed to detect the gear location and angular position of a geared shaft for automatic feeding of the shaft into the proper cutting position of the other end. The system consists of two set of coils, bridge circuit, signal condition circuit, and microprocessor. The coil sensors of the system measure changes of inductance along with the surface position of a geared shaft. The inductance changes are transformed to voltages by the bridge circuit, which are then conditioned and processed for the recognition of the gear. In order to incorporate with the experimental results with the sensor system, a finite element method (FEM) simulation for the magnetic field between the sensor and the shaft was carried out. The predicted results and the experiments revealed that the sensor system was appropriate for sensing the position of gear and the angular position of gear tooth of a geared shaft.

Development of an Inductive Position Sensor Using Magnetic Bearing Technology (자기 베어링 기술을 이용한 유도형 변위센서 개발)

  • 노명규;박병철;노승국;경진호;박종권
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.72-78
    • /
    • 2004
  • In this paper, a development of an inductive position sensor is described. The sensor is similar to a radial magnetic bearing in that the sensor stator is shaped like a heteropolar magnetic bearing and is driven by a switching amplifier. A demodulation filter extracts the gap information from the switching current ripples. A prototype sensor exhibits the resolution of $0.43\mum$ and the dynamic bandwidth of about 800Hz. The dynamic performance can be improved by increasing the switching frequency. However, the eddy current effects become noticeable at high switching frequency, thus limiting the improvement of the bandwidth.

Shaping of piezoelectric polyvinylidene fluoride polymer film for tip position sensing of a cantilever beam

  • Lee, Young-Sup
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.225-230
    • /
    • 2005
  • This paper describes a novel tip position sensor made of a triangularly shaped piezoelectric PVDF (polyvinylidene fluoride) film for a cantilever beam. Due to the boundary condition of the cantilever beam and the spatial sensitivity function of the sensor, the charge output of the sensor is proportional to the tip position of the beam. Experimental results with the PVDF sensor were compared with those using two commercially available position sensors: an inductive sensor and an accelerometer. The resonance frequencies of the test beam, measured using the PVDF sensor, matched well with those measured with the two commercial sensors and the PVDF sensor also showed good coherence over wide frequency range, whereas the inductive sensor became poor above a certain frequency.