• Title/Summary/Keyword: Inductive Coil

Search Result 123, Processing Time 0.025 seconds

영구자석 삽입형 Lisitano Coil을 이용한 Cu 배선용 대면적 ECR 플라즈마 소스 개발

  • Jang, Su-Uk;Yu, Hyeon-Jong;Jeong, Hyeon-Yeong;Jeong, Yong-Ho;Lee, Bong-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.227-227
    • /
    • 2011
  • 최근 ECR (Electron Cyclotron Resonance) 가열에 의한 플라즈마 소스는 고밀도 플라즈마를 유지하면서 고진공 운전을 동시에 만족시켜 다양한 플라즈마 응용 분야에서 많은 관심을 받고 있다. 그 중 HNB (Hyperthermal Neutral Beam)를 이용한 플라즈마 소스에 있어서 ECR 플라즈마 소스는 고진공에서도 높은 플라즈마 밀도를 유지할 수 있기 때문에 기존의 HNB 플라즈마 소스인 ICP (Inductive Coupled Plasma)의 운전압력의 한계점을 해결하여 높은 HNB 방향성(~1mTorr이하)을 가진 고밀도플라즈마를 발생시킬 수 있을 것이라 제안되었다. ECR 플라즈마가 HNB 소스로서 적합하기 위해서는 플라즈마 소스의 대면적화와 균일화가 동시에 이루어져야 한다. 본 연구에서는 이러한 요구에 부합하여 Lisitano coil를 이용한 균일한 대면적 ECR 플라즈마 소스를 설계하였다. 최적의 설계와 진단을 위한 Lisitano Coil antenna 내의 B-field 분포 시뮬레이션과 Langmuir Probe 진단이 이루어졌다.

  • PDF

design of shielded inductive SFCL made of high $T_c$ superconductor (고온초전도체를 이용한 차폐유도형 전류제한기의 설계)

  • Lim, Sung-Hun;Kang, Hyeong-Gon;Park, Kyung-Kuk;Han, Tae-Hee;Cho, Dong-Eon;Han, Byoung-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1531-1533
    • /
    • 1998
  • In this paper, the characteristics of the shielded inductive superconducting fault current limiter was designed and simulated. Parameters of design for superconducting tube, core and primary coil were first determined. And then according to the system characteristics such as load resistance, fault angle and source voltage, the simple power system composed of shielded inductive FCL was simulated by computer-aided numerical analysis. The flowing currents under the fault condition can be limited to about 10 A.

  • PDF

The modeling of the IPT system used for PRT (Personal Rapid Transmit) (소형궤도 차량용 유도전력급전 계통 모델링)

  • Lee Byung-Song;Bae Chang-Han;Byun Yeun-Sub;Han Kyung-Hee
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1413-1418
    • /
    • 2004
  • This paper shows the analysis of the inductive power transfer system in conjunction with series resonant converter operating variable high frequency. Of particular interest is the sensitivity of the complete system to variations in operational frequency and parameters. In inductive power transfer system, electrical power is transferred from a primary winding in the form of a coil or track, to one or more isolated pick-up coils that may relative to the primary. The ability to transmit power without contact enables high reliability and easy maintenance that allows inductive power transfer system to be implemented in hostile environments. This technology has found application in many fields such as electric vehicles, PRT(Personal Rapid Transit) etc. The coupling between the primary and secondary is then presented to include the effects of parameter and operational frequency variation.

  • PDF

The Characteristic analysis of the IPT system used for PRT(Personal Rapid Transmit) (소형궤도차량 유도전력급전 계통 특성해석)

  • Lee, B.S.;Kim, Do-Won;Han, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.218-220
    • /
    • 2005
  • This paper shows the analysis of the inductive power transfer system in conjunction with series resonant converter operating variable high frequency. Of particular interest is the sensitivity of the complete system to variations in operational frequency and parameters. In inductive power transfer system, electrical power is transferred from a prima교 winding in the form of a coil or track, to one or more isolated pick-up coils that may relative to the primary. The ability to transmit power without contact enables high reliability and easy maintenance that allows inductive power transfer system to be implemented in hostile environments. This technology has found application in many fields such as electric vehicles, PRT(Personal Rapid Transit) etc. The coupling between the primary and secondary is then presented to include the effects of parameter and operational frequency variation.

  • PDF

A Study on plasma etching for PCR manufacturing (PCR 장치를 위한 플라즈마 식각에 관한 연구)

  • Kim, Jinhyun;Ryoo, Kunkul;Lee, Jongkwon;Lee, Yoonbae;Lee, Miyoung
    • Clean Technology
    • /
    • v.9 no.3
    • /
    • pp.101-105
    • /
    • 2003
  • Plasma etching technology has been developed since it is recognized that silicon etching is very crucial in MEMS(Micro Electro Mechanical System) technology. In this study ICP(Inductive Coupled Plasma) technology was used as a new plasma etching to increase ion density without increasing ion energy, and to maintain the etching directions. This plasma etching can be used for many MEMS applications, but it has been used for PCR(Polymerase Chain Reaction) device fabrication. Platen power, Coil power and process pressure were parameters for observing the etching rate changes. Conclusively Platen power 12W, Coil power 500W, etchng/passivation cycle 6/7sec gives the etching rate of $1.2{\mu}m/min$ and sidewall profile of $90{\pm}0.7^{\circ}$, exclusively. It was concluded from this study that it was possible to minimize the environmental effect by optimizing the etching process using SF6 gas.

  • PDF

Characteristic Analysis of Inductive Power Transfer System for PRT (소형궤도 열차용 유도 전력 전송 시스템 특성해석)

  • Min, Byung-Hun;Lee, Byung-Song
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.3
    • /
    • pp.35-43
    • /
    • 2007
  • In this paper, the inductive power collector using electromagnetic induction for vehicle such as the PRT(Personal Rapid Transit) system is suggested and son ideas for power collector design to improve tile power transfer performance are presented. And also, the analysis of the inductive power transfer system in conjunction with series resonant converter operating variable high frequency is shown. Of particular interest is the sensitivity of the complete system to variations in operational frequency and parameters. In inductive power transfer system electrical power is transferred from a primary winding in the form of a coil or tract to one or more isolated pick-up coils that my relative to the primary. The ability to transmit power without contact enables high reliability and easy maintenance that allows inductive power transfer system to be implemented in hostile environments. This technology has found application in many fields such as electric vehicles, PRT(Personal Rapid Transit) etc. But, low output power is generated due to a loosely coupled characteristic of the large air-gap. Therefore, we will show you various characteristic of inductive power transfer system as double layer construction of secondary winding, which was divided in half to increase both output current and output voltage, a model of power collector and parallel winding structure, a model of concentration/ decentralization winding and the effects of parameter and operational frequency variation.

Effect of 3D Printed Spiral Antenna Design on Inductive Coupling Wireless Power Transmission System (3차원 프린팅을 이용한 무선전력전송의 안테나 설계 특성 규명)

  • Kim, Ji-Sung;Park, Min-Kyu;Lee, Ho;Kim, Chiyen
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.8
    • /
    • pp.73-80
    • /
    • 2020
  • The 3D printing of electronics has been a major application topics in additive manufacturing technology for a decade. In this paper, wireless power transfer (WPT) technology for 3D electronics is studied to supply electric power to its inner circuit. The principle of WPT is that electric power is induced at the recipient antenna coil under an alternating magnetic field. Importantly, the efficiency of WPT does rely on the design of the antenna coil shape. In 3D printed electronics, a flat antenna that can be placed on the printed plane within a layer of a 3D printed part is used, but provided a different antenna response compared to that of a conventional PCB antenna for NFC. This paper investigates the WPT response characteristics of a WPT antenna for 3D printed electronics associated with changes in its design elements. The effects of changing the antenna curvature and the gap between the wires were analyzed through experimental tests.

The Computer Simulation on the Characteristics of the Non-Inductive Superconducting Fault Current Limiter (무유도성 초전도전류제한기의 특성 해석 및 컴퓨터 시뮬레이션)

  • 주민석;이상진;오윤상;고태국
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.7
    • /
    • pp.1050-1060
    • /
    • 1994
  • This paper is a study on the computer simulation of the characteristics of the superconducting fault current limiter. Input variable parameters are apparent power, load resistance value, line resistance value and so on. Initial fault current 2 times larger than the trigger current is required to reduce the switching time of SFCL. The propagation velocity increases abruptly, the transport current is several times larger than the ciritical current. In this paper, the switching time is calculated to be 323$\mu$ sec, and the initial fault current is 19 times larger than the critical current. Because the trigger coils are bifilar winding, they have little impedance in superconducting state. After fault occurred, the limiting coil acts as a superconducting reactor and the trigger coils quench at a critical current. Without the SFCL in the circuit, fault current after the load impedence is shorted might be increased to 1100A. The fault current is, therefore, successfully limited by the superconducting limiting coil to 100A determined by the coil inductance.

  • PDF

Numerical analysis on the critical current evaluation and the correction of no-insulation HTS coil

  • Bonghyun Cho;Jiho Lee
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.1
    • /
    • pp.16-20
    • /
    • 2023
  • The International Electrotechnical Commission (IEC) 61788-26:2020 provides guidelines for measuring the critical current of Rare-earth barium copper oxide (REBCO) tapes using two methods: linear ramp and step-hold methods. The critical current measurement criterion, 1 or 0.1 μV/cm of electric field from IEC 61788-26 has been normally applied to REBCO coils or magnets. No-insulation (NI) winding technique has many advantages in aspects of electrical and thermal stability and mechanical integrity. However, the leak current from the NI REBCO coil can cause distortion in critical current measurement due to the characteristic resistance which causes the radial current flow paths. In this paper, we simulated the NI REBCO coil by applying both linear ramp and step-hold methods based on a simplified equivalent circuit model. Using the circuit analysis, we analyzed and evaluated both methods. By using the equivalent circuit model, we can evaluate the critical current of the NI REBCO coil, resulting in an estimation error within 0.1%. We also evaluate the accuracy of critical current measurement using both the linear ramp and step-hold methods. The accuracy of the linear ramp method is influenced by the inductive voltage, whereas the accuracy of the step-hold method depends on the duration of the hold-time. An adequate hold time, typically 5 to 10 times the time constant (τ), makes the step-hold method more accurate than the linear ramp method.