• Title/Summary/Keyword: Inductance evaluation

Search Result 26, Processing Time 0.025 seconds

A Study on Development of Power Supply for High Frequency Induction Heating (고주파 유도가열용 전원장치의 개발에 관한 연구)

  • Lee, Bong-Seob
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.3
    • /
    • pp.179-186
    • /
    • 2002
  • This paper proposed LC resonant current fed high frequency inverter for high frequency induction heating using leakage inductance of transformer and, its described operating principle. The analysis of circuit presented by using normalized parameter in considering leakage inductance of transformer and, discussed characteristic evaluation of inverter circuit in detail. The proposed inverter is operating ZVS to reduce turn-on and turn-off loss of switching devices so, raised an efficiency. And, the experimental apparatus was made on base characteristic evaluation of theoretical analysis to discuss possibility on high frequency source and confirmed a rightfulness theoretical analysis. A result of study, the proposed inverter is higher utilizing factor using on leakage inductance of transformer and show possibility, which is application on high frequency power system.

  • PDF

Absolute Evaluation of Inductor Using Current Transformer Comparator (전류변성기 비교기를 이용한 인덕터의 절대 평가)

  • Kim, Yoon-Hyoung;Jung, Jae-Kap;Han, Sang-Gil;Kim, Han-Jun;Han, Sang-Ok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.3
    • /
    • pp.279-284
    • /
    • 2008
  • We have developed two absolute evaluation technology of inductor using current transformer (CT) comparator. One is the method that the reactance of inductor is obtained by analysing the equivalent circuit of CT with inductor connected to series at secondary terminal of CT. The other is the method that the reactance of inductor is obtained by comparing phase displacement of current flowing on inductor by using CT comparator. These technologies have the advantage to apply up to rated current and voltage of inductor. The method was applied to inductors under test in the range of $100 {\mu}H{\sim}1\;H$. The inductance of the inductor under test obtained in this study are consistent with those measured by LCR meter using the same inductor within an expanded uncertainty (k = 2) in the overall range of inductance.

An Effective Gyrator-based Transformer Modeling using PSIM (PSIM 모델을 이용한 변압기 모델링 및 회로상수 추출방법)

  • Choi, Hee-Su;Choi, Sung-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.3
    • /
    • pp.207-214
    • /
    • 2016
  • Magnetic circuit is a physical modeling method that is useful in designing and analyzing power transformers, especially for a priori evaluation of leakage and magnetizing inductance before actual production. In this study, a novel modeling approach that uses PSIM magnetic elements adopting gyrator and permeance-capacitances is investigated. A formula to determine the permeance-capacitors in the core and leakage path are established, and a simulation jig is devised to link the physical model and the electrical terminal characteristics with an automated parameter determination process. The derived formula is verified by measurement results of the prototype transformer samples. Given its accuracy and simplicity, this approach is suitable for analyzing and designing LLC resonant transformers whose leakage and magnetizing inductance are very critical to circuit operation.

Quench Simulation and Analysis on Superconducting Cable Systems (초전도 케이블 계통에서의 켄치 모의 및 해석)

  • 김남열;이종범
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.1
    • /
    • pp.13-21
    • /
    • 2004
  • In the design of superconducting cable systems, quench analysis have to be advanced for applying to a real systems. It is necessary to calculate the current, voltage and resistance during the quench. Simulation program named EMTDC was used to analyze the quench state. Normal zone evaluation and quench development with EMTDC are one of the major features of quench analysis. This paper presents the two kinds of quench control models which are the Switch Control Type and the Fortran Control Type. In case of the quench developing area, the simplicity cable model consist of resistance, inductance and capacitance. The impedance of the pipe type superconducting cable is calculated by numerical analysis method. The resistance and inductance increased during quench. However the variation have an effect on the fault current. The voltage was also developed by resistance and inductance. This paper presents the relationship between the current. voltage, resistance and inductance during quench.

Comparison of Inductance Calculation Methods in Interior Permanent Magnet Synchronous Motor (매입형 영구자석 동기전동기의 인덕턴스 산정방법 비교)

  • Sun, Tao;Kwon, Soon-O;Lee, Suk-Hee;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.762-763
    • /
    • 2008
  • The purpose of this paper is to investigate and compare the inductance evaluation methods of interior permanent magnet synchronous motors (IPMSM). Three major finite element methods are discussed. Their detail calculation processes will be presented as well as their fundamental principles. Not only the results, but also their solving method, computation time and complexity also will be compared. Finally, the calculated results will be verified with an experiment.

  • PDF

Robust Current Control for Permanent Magnet Synchronous Motors by the Inverse LQ Method - An Evaluation of Control Performance Using Servo-Locks at Low Speed -

  • Takami Hiroshi
    • Journal of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.228-236
    • /
    • 2004
  • This paper describes the optimal current-control of a permanent magnet synchronous motor by the use of robust and simple current controllers, based upon the analytical procedure known as the inverse LQ (ILQ) design method. The ILQ design method is a strategy for finding the optimal gains based on pole assignment without solving the Riccati equation. It is very important to keep the motor in robust servo-lock. By experiments and simulations, we will show that the ILQ optimal servo-system with servo-lock is more insensitive at low speeds to variations in armature inductance than the standard PI servo-system. Variations in armature inductance have the greatest influence on the responses of a servo-system.

Test Result Analysis of a 1MW HTS Motor for Industry Application

  • Baik, S.K.;Kwon, Y.K.;Kim, H.M.;Lee, E.Y.;Kim, Y.C.;Park, H.J.;Kwon, W.S.;Park, G.S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.2
    • /
    • pp.33-36
    • /
    • 2009
  • A 1 MW class HTS (High-Temperature Superconducting) synchronous motor has been developed. This motor is aimed to be utilized for industrial application such as large motors operating in large plants. The HTS field coil of the developed motor is cooled by way of neon thermo siphonmechanism and the stator (armature) coil is cooled by water through hollow copper conductor. This paper also describes evaluation of some electrical parameters from performance test results of our motor, which was conducted at steady state in generator mode and motor mode. Open and short circuit tests were conducted in generator mode while a 1.1 MW rated induction machine was rotating the HTS machine. Electrical parameters such as mutual inductance and synchronous inductance are deduced from these tests. Load test was done upto rating torque during motor mode and efficiency was measured at each load torque.

Performance Evaluation of Small-Scaled Wind Power Generator with Outer Permanent Magnet Rotor considering Electromagnetic Losses (1) - Magnetic Field Analysis and Electrical Parameters Derivation using Electromagnetic Transfer Relations Theorem - (전자기 손실을 고려한 소형 외전형 영구자석 풍력발전기의 성능 평가 (1) - 전자기 전달관계 기법을 이용한 자계특성해석 및 회로정수 도출 -)

  • Jang, Seok-Myeong;Ko, Kyoung-Jin;Choi, Jang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2179-2189
    • /
    • 2010
  • This paper deals with analytical techniques for performance evaluation of small scaled wind power generator with outer permanent magnet rotor. In part (1), using transfer relations theorem, magnetic field distribution characteristics by PM and armature reaction field are derived. Moreover, electrical parameters such as back-EMF, inductance and resistance are calculated from the obtained field characteristic equations. The proposed analytical techniques are validated by nonlinear finite element method using commercial software 'Maxwell' and performance experiments of the manufactured generator. In part (2), generating characteristics analysis such as constant speed characteristics and constant resistive load characteristics, and performance evaluation according to variation of wind speed will be accomplished using the derived electrical parameters.

Absolute Evaluation of Capacitor and Inductor Using Voltage Transformer Comparator (전압변성기 비교기를 이용한 커패시터와 인덕터의 절대 평가)

  • Han, Sang-Gil;Kim, Yoon-Hyoung;Jung, Jae-Kap;Kim, Han-Jun;Han, Sang-Ok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.3
    • /
    • pp.285-290
    • /
    • 2008
  • We have developed the absolute evaluation technique of capacitor and inductor by measuring the phase displacement as a function of resistance of employed resistors in voltage transformer(VT) comparator. The methods were applied to the capacitor with the range of 100 nF - $5{\mu}F$ and the inductor with the range of $100{\mu}H{\sim}1\;H$. The capacitance values of capacitor obtained using our method are consistent within the expanded uncertainty those obtained using capacitor bridge. The inductance values of inductor obtained using our method are also consistent within the expanded uncertainty those obtained using LCR meter.

Development of an Automatic Evaluation System for the Precision Analysis of Potential Transformer Burden Characteristics (전압변성기용 부담특성 정밀분석용 자동평가시스템의 개발)

  • Kwon, Sung-Won;Kim, Mun-Seog;Jung, Jae Kap;Lee, Sung-Ha;Kim, Yung Soo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.10
    • /
    • pp.457-464
    • /
    • 2005
  • Both ratio error and phase angle error in potential transformer(PT) are critically affected by used burden, connected in parallel to the secondary terminal of the PT. Thus precise measurement of burden value is very important for the evaluation of PT An automatic measurement system has been developed for the measurement of burden value and power factor of a burden. The ac voltage, current and power of the burden are measured precisely, and the burden value and power factor were calculated from these measured values. The resistance and inductance values of the tested burden are also calculated. The overall measurement uncertainties are calculated and reported with the burden value and power factor. The best measurement uncertainty for the burden measurement with the developed automatic measurement system was estimated to be 0.5 $\%$.