• Title/Summary/Keyword: Inducible proteins

Search Result 242, Processing Time 0.025 seconds

Construction of the Genomic Expression Library of Bacillus anthracis for the Immunomic Analysis (면역체 분석을 위한 탄저균 유전자 발현 라이브러리의 구축)

  • Park, Moon-Kyoo;Jung, Kyoung-Hwa;Kim, Yeon-Hee;Rhie, Gi-Eun;Chai, Young-Gyu;Yoon, Jang-W.
    • Korean Journal of Microbiology
    • /
    • v.46 no.1
    • /
    • pp.21-26
    • /
    • 2010
  • As the causative agent of Anthrax, Bacillus anthracis causes an acute fatal disease in herbivores such as cattle, sheep, and horses as well as humans. The therapeutics and prevention of anthrax currently available are based on antibiotics and the live attenuated vaccine strains, which may be problematic due to the emergency of antibiotic resistant strains or residual virulence in those vaccine strains. Therefore, it has been required to develop novel therapeutics and vaccines which are safer and applicable to humans. Recently, the development of the multivalent vaccine targeting both spores and vegetative cells of B. anthracis along with anthrax toxin has been reported. In our attempts to screen potential candidates for those multivalent vaccines, the whole genomic expression library of B. anthracis was constructed in this study. To the end, the partial digests of the genomic DNA from B. anthracis (ATCC 14578) with Sau3AI were ligated with the inducible pET30abc expression vectors, resulting in approximately $1{\times}10^5$ clones in E. coli BL21(DE3). The redundancy test by DNA nucleotide sequencing was performed for the randomly selected 111 clones and found 56 (50.5%) B. anthracis genes, 17 (15.3%) vector sequences, and 38 (34.2%) unknown genes with no sequence homology by BLAST. An inducible expression of the recombinant proteins was confirmed by Western blot. Interestingly, some clones could react with the antiserum against B. anthracis. These results imply that the whole genomic library constructed in this study can be applied for analyzing the immunomes of B. anthracis.

Anti-inflammatory Activities of an Ethanol Extract of Sargassum macrocarpum in Lipopolysaccharide (LPS)-stimulated RAW 264.7 Macrophages (Lipopolysaccaride로 유도된 Raw 264.7 세포에서 큰열매모자반 에탄올 추출물의 항염증 활성)

  • Cheon, Ji Min;Kim, Hyang Suk;Choi, Eun Ok;Kwon, Da Hye;Choi, Yung Hyun;Kim, Byung Woo;Hwang, Hye Jin
    • Journal of Life Science
    • /
    • v.27 no.12
    • /
    • pp.1437-1444
    • /
    • 2017
  • Sargassum macrocarpum is a widely distributed marine brown algae found in the North Pacific. The objective of this study was to evaluate the anti-inflammatory activity of an ethanol extract of S. macrocarpum (EESM). First, we investigated the anti-inflammatory activities of EESM in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. EESM treatment suppressed nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) production and inhibited the expressions of the inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the mRNA and protein levels. In addition, the expression of pro-inflammatory cytokines, such as tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$) and interleukin-1 beta ($IL-1{\beta}$), was decreased in a dose dependent manner. Investigation of the signaling pathways of nuclear factor kappa B ($NF-{\kappa}B$), phosphoinositide-3-kinase (PI3K)/Akt, and mitogen-activated protein kinases (MAPKs) revealed suppression of $NF-{\kappa}B$ translocation from the cytosol to nucleus by EESM treatment. The phosphorylation of the Akt and ERK proteins was also inhibited by EESM treatment. EESM treatment also stimulated the expression of the heme oxygenase-1 (HO-1) enzyme and its upstream transcription factor, nuclear factor-E2-related factor 2 (Nrf2). These results suggest that EESM has anti-inflammatory activity and could have potential uses in the field of nutraceuticals.

Antioxidant and Anti-inflammation Activity of Red Cabbage Extract (적양배추 추출물의 항산화 및 항염증 활성)

  • Ha, Hyun-Joo;Lee, Chun-Bok
    • Culinary science and hospitality research
    • /
    • v.20 no.2
    • /
    • pp.16-26
    • /
    • 2014
  • This study investigated the anti-inflammatory and antioxidnat effects of red cabbage extracts on RAW264.7 cells. Cell toxicity was determined by MTT assay. We evaluated the anti-inflammatory effects of red cabbage extracts by measuring nitric oxide (NO), inducible NOS (iNOS) production, and cyclooxygenase-2 (COX-2) expression by Western blotting. Ethanolic and water extracts (0.25, 0.5, and 1.0 mg/mL) significantly suppressed LPS-stimulated production of NO. Two kinds of extracts reduced the expression of iNOS and COX-2 proteins. The present results show that red cabbage extract has potent anti-inflammatory effects on RAW264.7 cells. In addition, two kinds of extracts as well as various antioxidant activities such as 2,2'-azino-bis-(3-ethylbenzo thiazoline-6-sulfonic acid)(ABTS) radical scavenging activity, ferric reducing antioxidant power(FRAP). The total polyphenol and flavonoid contents of the ethanolic and water extracts from red cabbage were $18.699{\pm}0.87$ and $11.174{\pm}4.86$ mg GAE/g extract, respectively, and $7.782{\pm}2.23$ and $15.608{\pm}3.54$ mg CE/g extract. The ABTS radical scavenging activities of the ethanolic and water extracts and BHT were $0.269{\pm}0.12$, $0.212{\pm}0.22$ and $1.235{\pm}0.07mM$ Trolox equivalent/mg extract, respectively. The FRAP values of the extracts were similar to those of BHT, which were used as a positive control. Therefore, red cabbage extract is considered as a good food material of functional foods for prevention against various diseases.

Anti-Inflammatory Effect of Ethanol Extract from Grateloupia elliptica Holmes on Lipopolysaccharide-Induced Inflammatory Responses in RAW 264.7 Cells and Mice Ears (LPS로 유도된 RAW 264.7 세포와 마우스 귀 조직에 대한 참도박(Grateloupia elliptica Holmes) 에탄올 추출물의 항염증 효과)

  • Bae, Nan-Young;Kim, Min-Ji;Kim, Koth-Bong-Woo-Ri;Ahn, Na-Kyung;Choi, Yeon-Uk;Park, Ji-Hye;Park, Sun-Hee;Ahn, Dong-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.8
    • /
    • pp.1128-1136
    • /
    • 2015
  • This study investigated the anti-inflammatory effects of ethanol extract from Grateloupia elliptica Holmes (GEHEE) on the lipopolysaccharide-induced inflammatory response. Anti-inflammatory effects were detected by enzyme-linked immunosorbent assay, Western blotting, and immunohistochemistry. There were no cytotoxic effects on proliferation of macrophages treated with GEHEE compared to the control. GEHEE remarkably suppressed NO and pro-inflammatory cytokines (interleukin-6, tumor necrosis $factor-{\alpha}$, and $interleukin-1{\beta}$) production and reduced expression of inducible nitric oxide synthase, cyclooxygenase-2, and nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) proteins in a dose-dependent manner. GEHEE also significantly reduced activation of mitogen-activated protein kinases (MAPKs). The formation of edema in mouse ears was reduced at the highest dose compared to the control. GEHEE also reduced dermal thickness and mast cell numbers based on histological analysis. These results suggest that GEHEE exerts significant anti-inflammatory activity via inhibition of $NF-{\kappa}B$ and MAPKs activation and may be a potential anti-inflammatory therapeutic material.

Anti-Inflammatory Effect of Grateloupia imbricata Holmes Ethanol Extract on LPS-Induced RAW 264.7 Cells (꽃지누아리 에탄올 추출물의 LPS로 유도된 RAW 264.7 세포에 대한 항염증 효과)

  • Kim, Min-Ji;Bae, Nan-Yong;Kim, Koth-Bong-Woo-Ri;Park, Ji-Hye;Park, Sun-Hee;Choi, Jung-Su;Ahn, Dong-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.2
    • /
    • pp.181-187
    • /
    • 2016
  • Algae is a potential resource with various biological activities. In this study, the anti-inflammatory effect of Grateloupia imbricata Holmes ethanol extract (GIHEE) from red algae was investigated in LPS-induced RAW 264.7 cells. As a result, reduced secretion of pro-inflammatory cytokines [tumor necrosis factors-${\alpha}$, interleukin (IL)-$1{\beta}$, and IL-6] and nitric oxide (NO) was observed in a dose-dependent manner. Expression of nuclear factor-kappaB (NF-${\kappa}B$) as well as inducible NO synthase and cyclooxygenase-2 proteins was reduced by GIHEE, suggesting that the anti-inflammatory activity of GIHEE is related to suppression of NF-${\kappa}B$ signaling pathways. In addition, GIHEE reduced phosphorylation of mitogen-activated protein kinases. These results suggest that GIHEE can be used as a potential anti-inflammatory therapeutic.

Anti-inflammatory Effect of Ethanol Extract from Eupatorium japonicum (등골나물 추출물의 항염증 효과)

  • Lee, Han-Na;Lim, Do-Young;Lim, Soon-Sung;Kim, Jong-Dai;Yoon, Jung-Han
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.1
    • /
    • pp.65-71
    • /
    • 2011
  • Eupatorium japonicum belongs to a family of Asteraceae plants and flowers of E. japonicum have been consumed as a tea. In this study, we investigated whether E. japonicum extract inhibits lipopolysaccharide (LPS)-induced inflammatory responses in Raw264.7 macrophages. The cells were treated with various concentrations (0, 1, 2.5, 5, or 10 mg/L) of 70% ethanol extract from E. japonicum flowers (EJE) in Raw264.7 cells. LPS-induced nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) production were inhibited by EJE up to 67% and 49% of these productions, respectively without any reduction of viable cell numbers. EJE reduced LPS-induced expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 proteins and their corresponding mRNA levels. Additionally, EJE decreased the levels of interleukin (IL)-6, IL-1${\beta}$, and tumor necrosis factor (TNF)-${\alpha}$ mRNA. EJE was further fractionated with water, butanol, ethylacetate (EA), hexane, or methylene chloride (MC). Among the resulting five fractions, EA and MC, respectively from EJE significantly inhibited LPS-induced NO production (each inhibition rate was 85.3% of 10 mg/L EA fraction and 97.2% of 10 mg/L MC fraction) without significant cytotoxicity in Raw264.7 cells. These results indicate that EJE exhibits powerful effects of anti-inflammation and can be developed as a potential anti-inflammatory agent.

Molecular Characterization of Ischemia-Responsive Protein 94 (irp94) Response to Unfolded Protein Responses in the Neuron

  • Kim Seung-Whan;Kwon Ki-Sang;Shin Kee-Sun;Kim Seung-Ho;Kwon O-Yu
    • Biomedical Science Letters
    • /
    • v.12 no.2
    • /
    • pp.81-89
    • /
    • 2006
  • The ischemia-responsive 94 gene (irp94) encoding a 94 kDa endoplasmic reticulum resident protein was investigated its molecular properties associated with unfoled protein responses. First, the expression of irp94 mRNA was tested after the reperfusion of the transient forebrain ischemia induction at the central nervous system in three Mongolian gerbils. Second, irp94 expression in PC12 cells, which are derived from transplantable rat pheochromocytoma cultured in the DMEM media, was tested at transcriptional and translational levels. The half life of irp94 mRNA was also determined In PC12 cells. Last, the changes of irp94 mRNA expression were investigated by the addition of various ER stress inducible chemicals (A23187, BFA, tunicamycin, DTT and $H_2O_2$) and proteasome inhibitors, and heat shock. High level expression of irp94 mRNA was detected after 3 hours reperfusion in the both sites of the cerebral cortex and hippocampus of the gerbil brain. The main regulation of irp94 mRNA expression in PC 12 cells was determined at the transcriptional level. The half life of irp94 mRNA in PC12 cells was approximately 5 hours after the initial translation. The remarkable expression of irp94 mRNA was detected by the treatment of tunicamycin, which blocks glycosylation of newly synthesized polypeptides, and $H_2O_2$, which induces apoptosis. When PC12 cells were treated with the cytosol proteasome inhibitors such as ALLN (N-acetyl-leucyl-norleucinal) and MG 132 (methylguanidine), irp94 mRNA expression was increased. These results indicate that expression of irp94 was induced by ER stress including oxidation condition and glycosylation blocking in proteins. Expression of irp94 was increased when the cells were chased after heat shock, suggesting that irp94 may be involved in recovery rather than protection against ER stresses. In addition, irp94 expression was remarkably increased when cytosol proteasomes were inhibited by ALLN and MG 132, suggesting that irp94 plays an important role for maintaining the ERAD (endoplasmic reticulum associated degradation) function.

  • PDF

Skate cartilage extracts containing chondroitin sulfate ameliorates hyperlipidemia-induced inflammation and oxidative stress in high cholesterol diet-fed LDL receptor knockout mice in comparison with shark chondroitin sulfate

  • Seol, Bo Gyeong;Kim, Ji Hyun;Woo, Minji;Song, Yeong Ok;Choi, Yung Hyun;Noh, Jeong Sook;Cho, Eun Ju
    • Nutrition Research and Practice
    • /
    • v.14 no.3
    • /
    • pp.175-187
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: In this study, we investigated the beneficial effects of skate cartilage extracts containing chondroitin sulfate (SCS) on hyperlipidemia-induced inflammation and oxidative stress in high cholesterol diet (HCD)-fed mice in comparison with the effects of shark cartilage-derived chondroitin sulfate (CS). MATERIALS/METHODS: Low-density lipoprotein receptor knockout (LDLR-KO) mice were fed HCD with an oral administration of CS (50 and 100 mg/kg BW/day), SCS (100 and 200 mg/kg BW/day), or water, respectively, for ten weeks. RESULTS: The administration of CS or SCS reduced the levels of serum triglyceride (TG), total cholesterol (TC), and LDL cholesterol and elevated the levels of high-density lipoprotein cholesterol, compared with those of the control group (P < 0.05). Furthermore, CS or SCS significantly attenuated inflammation by reducing the serum levels of interleukin (IL)-1β and hepatic protein expression levels of nuclear factor kappa B, inducible nitric oxide synthase, cyclooxygenase-2, and IL-1beta (P < 0.05). In particular, the serum level of tumor necrosis factor-alpha was reduced only in the 100 mg/kg BW/day of SCS-fed group, whereas the IL-6 level was reduced in the 100 and 200 mg/kg BW/day of SCS-fed groups (P < 0.05). In addition, lipid peroxidation and nitric oxide production were attenuated in the livers of the CS and SCS groups mediated by the upregulation of hepatic proteins of antioxidant enzymes, such as superoxide dismutase, catalase, and glutathione peroxidase (P < 0.05). CONCLUSIONS: These results suggest that the biological effects of SCS, similar to those of CS, are attributed to improved lipid profiles as well as suppressed inflammation and oxidative stress induced by the intake of HCD.

$RpoB_{127-135}$ Peptide Derived from Mycobacterium tuberculosis is Processed and Presented to HLA-$A^*0201$ Restricted CD8+ T Cells via an Alternate HLA-I Processing Pathway

  • Cho, Jang-Eun;Cho, Sang-Nae;Cho, Sungae
    • Biomedical Science Letters
    • /
    • v.20 no.4
    • /
    • pp.250-255
    • /
    • 2014
  • Mycobacterium tuberculosis (MTB) resides and replicates inside macrophages. In our previous report, we reported that CD8+ T cell-mediated immune responses specific for the peptide derived from MTB RNA polymerase beta-subunit ($RpoB_{127-135}$) could be induced in TB patients expressing HLA-$A^*0201$ subtype. In order to examine whether $RpoB_{127-135}$ specific CD8+ T cells can recognize MTB infected macrophages in vitro, CD8+ T cell lines specific for $RpoB_{127-135}$ peptide were generated from peripheral blood mononuclear cells (PBMCs) of healthy HLA-$A^*0201$ subjects by in vitro immunization technique. In this study, we observed $RpoB_{127-135}$ specific CD8+ T cells could recognize and destroy macrophages infected with MTB for 2 to 4 days. $RpoB_{127-135}$ specific CD8+ T cell immune response was inducible from PBMC of healthy subjects expressing HLA-$A^*0206$ subtype, one of HLA-A2 supertype members. Next, we investigated the HLA-I processing mechanism of $RpoB_{127-135}$ peptide in MTB infected macrophages. As a result, the presentation of the MTB derived epitope peptide, $RpoB_{127-135}$, to CD8+ T cells was not inhibited by the treatment with brefeldin-A (ER-Golgi transport inhibitor) or lactacystin (proteasome inhibitor), which blocks the classical HLA-I processing pathway. However, $RpoB_{127-135}$ specific CD8+ T cell activity was blocked either by the blocking agent for the endocytosis (cytochalasin D) or by the blocking antibody (W6/32) for HLA-I molecules. Therefore, the $RpoB_{127-135}$ peptide may be processed by accessing the alternate HLA-I processing pathway. Understanding the processing and presentation mechanisms of the MTB derived proteins will help to improve the efficacy of vaccines and the efficiency of therapeutic agents for TB.

Levosulpiride, (S)-(-)-5-Aminosulfonyl-N-[(1-ethyl-2-pyrrolidinyl) methyl]-2-methoxybenzamide, enhances the transduction efficiency of PEP-1-ribosomal protein S3 in vitro and in vivo

  • Ahn, Eun-Hee;Kim, Dae-Won;Kim, Duk-Soo;Woo, Su-Jung;Kim, Hye-Ri;Kim, Joon;Lim, Soon-Sung;Kang, Tae-Cheon;Kim, Dong-Joon;Suk, Ki-Tae;Park, Jin-Seu;Luo, Qiuxiang;Eum, Won-Sik;Hwang, Hyun-Sook;Choi, Soo-Young
    • BMB Reports
    • /
    • v.44 no.5
    • /
    • pp.329-334
    • /
    • 2011
  • Many proteins with poor transduction efficiency were reported to be delivered to cells by fusion with protein transduction domains (PTDs). In this study, we investigated the effect of levosulpiride on the transduction of PEP-1 ribosomal protein S3 (PEP-1-rpS3), and examined its influence on the stimulation of the therapeutic properties of PEP-1-rpS3. PEP-1-rpS3 transduction into HaCaT human keratinocytes and mouse skin was stimulated by levosulpiride in a manner that did not directly affect the cell viability. Following 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation in mice, levosulpiride alone was ineffective in reducing TPA-induced edema and in inhibiting the elevated productions of inflammatory mediators and cytokines, such as cyclooxygenase-2, inducible nitric oxide synthase, interleukin-6 and -1${\beta}$, and tumor necrosis factor-${\alpha}$. Anti-inflammatory activity by PEP-1-rpS3 + levosulpiride was significantly more potent than by PEP-1-rpS3 alone. These results suggest that levosulpiride may be useful for enhancing the therapeutic effect of PEP-1-rpS3 against various inflammatory diseases.