• Title/Summary/Keyword: Inducible promoter

Search Result 193, Processing Time 0.021 seconds

Metabolic Engineering of Nonmevalonate Pathway in Escherichia coli Enhances Lycopene Production

  • Kim, Seon-Won;J.D. Keasling
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2001.06a
    • /
    • pp.141-145
    • /
    • 2001
  • Isopentenyl diphosphate (IPP) is the common, five-carbon building block in the biosynthesis of all carotenoids. IPP in Escherichia coli is synthesized through the non-mevalonate pathway. The first reaction of IPP biosynthesis in E. coli is the formation of l-deoxy-D-xylulose-5-phosphate (DXP), catalyzed by DXP synthase and encoded by dxs. The second reaction in the pathway is the reduction of DXP to 2-C-methyl-D-erythritol-4-phosphate, catalyzed by DXP reductoisomerase and encoded by dxr. To determine if one or more of the reactions in the non-mevalonate pathway controlled flux to IPP, dxs and dxr were placed on several expression vectors under the control of three different promoters and transformed into three E. coli strains (DH5$\alpha$, XL1-Blue, and JMl0l) that had been engineered to produce lycopene. Lycopene production was improved significantly in strains transformed with the dxs expression vectors. When the dxs gene was expressed from the arabinose-inducible araBAD promoter ( $P_{BAD}$) on a medium-copy plasmid, lycopene production was 2-fold higher than when dxs was expressed from the IPTG-inducible trc and lac promoters ( $P_{trc}$ and $P_{lac}$, respectively) on medium-copy and high-copy plasmids. Given the low final densities of cells expressing dxs from IPTG-inducible promoters, the low lycopene production was probably due to the metabolic burden of plasmid maintenance and an excessive drain of central metabolic intermediates. At arabinose concentrations between 0 and 1.33 roM, cells expressing both dxs and dxr from $P_{BAD}$ on a medium-copy plasmid produced 1.4 - 2.0 times more lycopene than cells expressing dxs only. However, at higher arabinose concentrations lycopene . production in cells expressing both dxs and dxr was lower than in cells expressing dxs only. A comparison of the three E. coli strains transformed with the arabinose-inducible dxs on a medium-copy plasmid revealed that lycopene production was highest in XLI-Blue.LI-Blue.

  • PDF

Tolerance to Potato Soft Rot Disease in Transgenic Potato Expressing Soybean Ferritin Gene (대두 철분결합단백질 유전자 발현 형질전환 감자의 감자무름병 방어 증진효과)

  • Bae, Shin-Chul;Yeo, Yun-Soo;Heu, Sung-Gi;Hwang, Duk-Ju;Byun, Myung-Ok;Go, Seung-Joo
    • Journal of Plant Biotechnology
    • /
    • v.29 no.4
    • /
    • pp.229-233
    • /
    • 2002
  • Ferritin is ubiquitous in bacteria, animals and plants. Ferritin is thought to play two main roles in living cells to provide iron for the synthesis of iron protein such as ferretoxin and cytochromes and to prevent damage from radicals produced by iron/dioxygen interaction. To enhance the resistance of potato to Erwinia carotovora, the soybean ferritin gene was introduced into the potato either under CaMV 35S or hsr203J promoter. Potato transgenic plants were screened by PCR analysis using specific primers to the ferritin gene. Expression of ferritin gene under CaMV 35S and hsr203J promoter in potato transgenic plants was confirmed by northern blot analysis. hsr203J promoter known to pathogen inducible in tobacco drives the induction upon Phytophthora infestan in potato and the transcript level of ferritin gene was extremely high after 24 hours post inoculation. One of transformants under CaMV 35S promoter was increased 2.5 fold than untransformant. Each one of transgenic potato containing gene promoter CaMV 35S and hsr203J-ferrtin fusion exhibited tolerance against potato soft rot.

Functional Analysis of the Stress-Inducible Soybean Calmodulin Isoform-4 (GmCaM-4) Promoter in Transgenic Tobacco Plants

  • Park, Hyeong Cheol;Kim, Man Lyang;Kang, Yun Hwan;Jeong, Jae Cheol;Cheong, Mi Sun;Choi, Wonkyun;Lee, Sang Yeol;Cho, Moo Je;Kim, Min Chul;Chung, Woo Sik;Yun, Dae-Jin
    • Molecules and Cells
    • /
    • v.27 no.4
    • /
    • pp.475-480
    • /
    • 2009
  • The transcription of soybean (Glycine max) calmodulin isoform-4 (GmCaM-4) is dramatically induced within 0.5 h of exposure to pathogen or NaCl. Core cis-acting elements that regulate the expression of the GmCaM-4 gene in response to pathogen and salt stress were previously identified, between -1,207 and -1,128 bp, and between -858 and -728 bp, in the GmCaM-4 promoter. Here, we characterized the properties of the DNA-binding complexes that form at the two core cis-acting elements of the GmCaM-4 promoter in pathogen-treated nuclear extracts. We generated GUS reporter constructs harboring various deletions of approximately 1.3-kb GmCaM-4 promoter, and analyzed GUS expression in tobacco plants transformed with these constructs. The GUS expression analysis suggested that the two previously identified core regions are involved in inducing GmCaM-4 expression in the heterologous system. Finally, a transient expression assay of Arabidopsis protoplasts showed that the GmCaM-4 promoter produced greater levels of GUS activity than did the CaMV35S promoter after pathogen or NaCl treatments, suggesting that the GmCaM-4 promoter may be useful in the production of conditional gene expression systems.

Transcriptional activation of human GM3 synthase (hST3Gal V) gene by valproic acid in ARPE-19 human retinal pigment epithelial cells

  • Song, Na-Ree;Kim, Seok-Jo;Kwon, Haw-Young;Son, Sung-Wook;Kim, Kyoung-Sook;Ahn, Hee-Bae;Lee, Young-Choon
    • BMB Reports
    • /
    • v.44 no.6
    • /
    • pp.405-409
    • /
    • 2011
  • The present study demonstrated that valproic acid (VPA) transcriptionally regulates human GM3 synthase (hST3Gal V), which catalyzes ganglioside GM3 biosynthesis in ARPE-19 human retinal pigment epithelial cells. For this, we characterized the promoter region of the hST3Gal V gene. Functional analysis of the 5'-flanking region of the hST3Gal V gene revealed that the -177 to -83 region functions as the VPA-inducible promoter and that the CREB/ATF binding site at -143 is crucial for VPA-induced expression of hST3Gal V in ARPE-19 cells. In addition, the transcriptional activity of hST3Gal V induced by VPA in ARPE-19 cells was inhibited by SP600125, a c-Jun N-terminal kinase (JNK) inhibitor. In summary, our results identified the core promoter region in the hST3Gal V promoter and for the first time demonstrated that ATF2 binding to the CREB/ATF binding site at -143 is essential for transcriptional activation of hST3Gal V in VPA-induced ARPE-19 cells.

HIF-1α-Dependent Induction of Carboxypeptidase A4 and Carboxypeptidase E in Hypoxic Human Adipose-Derived Stem Cells

  • Moon, Yunwon;Moon, Ramhee;Roh, Hyunsoo;Chang, Soojeong;Lee, Seongyeol;Park, Hyunsung
    • Molecules and Cells
    • /
    • v.43 no.11
    • /
    • pp.945-952
    • /
    • 2020
  • Hypoxia induces the expression of several genes through the activation of a master transcription factor, hypoxia-inducible factor (HIF)-1α. This study shows that hypoxia strongly induced the expression of two carboxypeptidases (CP), CPA4 and CPE, in an HIF-1α-dependent manner. The hypoxic induction of CPA4 and CPE gene was accompanied by the recruitment of HIF-1α and upregulation in the active histone modification, H3K4me3, at their promoter regions. The hypoxic responsiveness of CPA4 and CPE genes was observed in human adipocytes, human adipose-derived stem cells, and human primary fibroblasts but not mouse primary adipocyte progenitor cells. CPA4 and CPE have been identified as secreted exopeptidases that degrade and process other secreted proteins and matrix proteins. This finding suggests that hypoxia changes the microenvironment of the obese hypoxic adipose tissue by inducing the expression of not only adipokines but also peptidases such as CPA4 and CPE.

Innate immune recognition of respiratory syncytial virus infection

  • Kim, Tae Hoon;Lee, Heung Kyu
    • BMB Reports
    • /
    • v.47 no.4
    • /
    • pp.184-191
    • /
    • 2014
  • Respiratory syncytial virus (RSV) is the leading cause of respiratory infection in infants and young children. Severe clinical manifestation of RSV infection is a bronchiolitis, which is common in infants under six months of age. Recently, RSV has been recognized as an important cause of respiratory infection in older populations with cardiovascular morbidity or immunocompromised patients. However, neither a vaccine nor an effective antiviral therapy is currently available. Moreover, the interaction between the host immune system and the RSV pathogen during an infection is not well understood. The innate immune system recognizes RSV through multiple mechanisms. The first innate immune RSV detectors are the pattern recognition receptors (PRRs), including toll-like receptors (TLRs), retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), and nucleotide-biding oligomerization domain (NOD)-like receptors (NLRs). The following is a review of studies associated with various PRRs that are responsible for RSV virion recognition and subsequent induction of the antiviral immune response during RSV infection.

Inducible Expression of the Lactadherin Gene with a Reverse Tetracycline-Regulated Retroviral Vector System (Tetracycline으로 발현이 유도되는 Retrovirus Vector System을 이용한 Human Lactadherin 유전자의 전이와 발현)

  • 이용석;오훈규;권모선;박창식;김태완;박재복
    • Korean Journal of Animal Reproduction
    • /
    • v.27 no.3
    • /
    • pp.259-268
    • /
    • 2003
  • Lactadherin (formerly known as BA46), a major glycoprotein of the human milk fat globule membrane, is abundant in human breast milk and breast carcinoma cells and is known to prevent symptomatic rotavirus infections. In this study, we tried to transfer the human lactadherin gene to the Chinese Hamster Ovary (CHO) cells using retrovirus vector system and tested inducible expression of the gene under the tetracycline-controllable promoter. At first, tetracycline-mediated inducibility was tested using E.coli LacZ marker gene. NIH3T3 cells co-infected with RevTet-On and RevTRE-LacZ retrovirus vectors showed that the cells responded to doxycycline (a derivative of tetracycline) in a dose-dependent manner, and prominent induction of the lacZ gene expression was observed from 1 $\mu\textrm{g}$/ml of doxycycline concentration. Based on the results of the pilot experiment, inductional expression of the human lactadherin gene was conducted using RevTet-On and RevTRE-Ltd retrovirus vectors. Analysis with the RT-PCR demonstrated successful inductional expression of the lactadherin gene in the Chinese Hamster Ovary (CHO) cells. Considering that constitutive overexpression of the exogenous genes in the target cells causes serious physiological imbalance, the results obtained in this study will be very useful especially in the studies of gene therapy and transgenic animal production.

Identification of a host range determinant from Ralstonia solancearum race 3

  • Yeonhwa Jeong;Lee, Seungdon;Ingyu Hwang
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.71.2-71
    • /
    • 2003
  • Ralstonia solancearum infects many solanaceous plants, however race 3 infects only potato and tomato weakly. To identify genes responsible for race specificity of R. solanacearum, we mobilized genomic library of LSD2029 (race 3) into LSD341 (race 1) and inoculated 1,000 transconjugants into hot pepper. One transconjugant that did not induce wilt symptom in hot pepper was isolated. We found that a cosmid clone, pRSl, conferred avirulence to LSD341. By deletion and mutational analyses of pRSl, we found the 0.9-kb PstI/Hindlll fragment carries avirulence functions. We sequenced the fragment and identified one possible open reading frame, a rsal gene, possibly encoding 110 amino acids. The rsal was preceded with a plant-inducible promoter (PIP) box, indicating that the gene might be regulated by HrpB. Interestingly, the promoter region of the rsal homolog in the strain GM11000 (race 1) did not have the PIP box. Rsal did not show any significant homologies with proteins in the database, indicating th e protein is different from the previously reported avirulence proteins. When we mutated the rsal gene by marker-exchange in LSD2029, the mutant was less virulent in potato.

  • PDF

Inhibition of TCDD Induced Cyplal Expression by SNP In Hepa I Cells

  • Kim, Ji-E.;Sheen, Yhun-Y.
    • Biomolecules & Therapeutics
    • /
    • v.7 no.4
    • /
    • pp.315-321
    • /
    • 1999
  • Since it has been known that hypoxia increases inducible nitric oxide synthase (iNOS) gene expression through hypoxia responsive element, it was possible to establish the hypothesis that nitric oxide could be a mediator of hypoxia to inhibit Cyplal promoter activity. In order to test this hypothesis, we have undertaken the study to examine the effects of hypoxia and nitric oxide on Cyplal promoter activity in Hepa I cells. Mouse Cyplal 5'flanking DNA, 1.6 Kb was cloned into pGL3 expression vector in order to construct pmCyplal-Luc. Hepa I cells were transfected with pmCyplal-Luc and were treated with $10^{-9}$ M TCDD and nitric oxide producing agents, such as lipopolysaccharide(LPS), sodium nitroprusside (SNP). Luciferase activity of reporter gene was measured from pmCyplal-Luc transfected Hepa I cell lysate which contains 2 g total protein using luciferin as a substrate. Nitric oxide producing agents, such as lipopolysaccharide (LPS), sodium nitroprusside(SNP) showed inhibition of luciferase activity that was induced by $10^{-9}$M TCDD treatment with dose dependent manner. Concomitant treatment of 1mM $N^G$-nitro-ι-arginine with $10^{-6}$~$10^{-4}$M sodium nitro-prusside recovered luciferase activity from the TCDD induced luciferase activity that was inhibited by nitric oxide producing agents. These demonstrated that nitric oxide could be a mediator of inhibitors on dioxin induced Cyplal expression in Hepa I cells.

  • PDF

High Copy Rme1p Suppresses Iron-Induced Cell Growth Defect of Saccharomyces cerevisiae

  • Park, Yong-Sung;Yun, Cheol-Won;Kong, Jae-Yang;Kim, Tae-Hyoung;Sung, Ha-Chin
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.470-473
    • /
    • 2004
  • In the yeast Saccharomyces cerevisiae, iron can be toxic. Because of this phenomenon, its metabolism of iron is strictly regulated. We have constructed a model system in which cell growth is defected during periods of iron over-load. When $Aft1-1^{up}$ protein was overexpressed with Ga110 promoter, a galactose inducible promoter, cell growth was defected and levels of CLN2 transcript decreased. However transcript levels of AFT1 and FET3 genes increased over time in a consistent manner throughout the course of $AFT1-1^{up}$ overexpression. We have screened to find genes to suppress cell growth defect by iron overload with YEp-derived high copy yeast genomic DNA library and found that high copy of Rmelp suppressed cell growth defects. Rme1p has been known as an activator protein of CLN2 gene expression. Taking these results together, we suggest that the yeast cell cycle is arrested at the $G_1$, phase by iron overload via Cln2p.