• Title/Summary/Keyword: Induced systemic resistance

Search Result 131, Processing Time 0.026 seconds

Bacillus vallismortis EXTN-1-Mediated Growth Promotion and Disease Suppression in Rice

  • Park Kyung-Seok;Paul Diby;Yeh Wan-Hae
    • The Plant Pathology Journal
    • /
    • v.22 no.3
    • /
    • pp.278-282
    • /
    • 2006
  • Bacillus vallismortis EXTN-1, a biocontrol agent in cucumber, tomato and potato was tested in rice pathosystem against rice fungal pathogens viz. Magnaporthe grisea, Rhizoctonia solani and Cochliobolus miyabeanus. Apart from increasing the yield in the bacterized plants (11.6-12.6% over control), the study showed that EXTN1 is effective in bringing about disease suppression against all the tested fungal pathogens. EXTN-l treatment resulted in 52.11% reduction in rice blast, 83.02% reduction in sheath blight and 11.54% decrease in brown spot symptoms. As the strain is proven as an inducer for systemic resistance based on PR gene expression in Arabidopsis and tobacco models, it is supposed that a similar mechanism works in rice, bringing about disease suppression. The strain could be used as a potent biocontrol and growth-promoting agent in rice cropping system.

INDUCTION OF SYSTEMIC RESISTANCE IN CUCUMBER AGAINST ANTHRACNOSE BY PLANT GROWTH PROMOTING FUNGI

  • Hyakumachi, Mitsuro
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 1997.06a
    • /
    • pp.47-55
    • /
    • 1997
  • Plant growth promoting fungi(PGPF) obtained from zoysiagrass rhizosphere offer dual advantages - induse systemic disease resistance response in cucumber to C. orbiculare infection and cause enhancement of plant growth and increase yield. PGPF protected plants either by colonizing roots or by their metabolites. PGPF offer an advantage by protecting plants for more than 9 weeks and 6 week in the greenhouse and field. PGPF-induced plants limited pathogen spore germination and decreased the number of infection hyphae on the leaf, and increased lignification at places of attempted pathogen infection, thus reducing the pathogen spread. PGPF elicited increased activities of chitinascs, glucanases, peroxidase, polyphenol oxidase, and phenylalanine ammonia lyase to C. orbiculare infection in cucumber plants. The role of PGPF in elevating cucumber defense response to pathogen infection suggests potential application of PGPF as biological control agents.

  • PDF

Observations of Infection Structures on the Leaves of Cucumber Plants Pre-treated with Arbuscular Mycorrhiza Glomus intraradices after Challenge Inoculation with Colletotrichum orbiculare

  • Lee, Chung-Sun;Lee, Yun-Jeong;Jeun, Yong-Chull
    • The Plant Pathology Journal
    • /
    • v.21 no.3
    • /
    • pp.237-243
    • /
    • 2005
  • Resistance inductions on the leaves of cucumber plant by an arbuscular mycorrhiza Glomus intraradices were investigated. In addition, the infection structures were observed at the penetration sites on the leaves of plant inoculated with Colletotrichum orbiculare using a fluorescence microscope. The severity of anthracnose disease caused by Colletotrichum orbiculare was significantly decreased on the leaves of cucumber plant colonized with G intraradices compared with those of non-treated control plants. As a positive control, pre-treatment with DL-3-aminobutyric acid (BABA) caused a remarkable reduction of the disease severity on the pathogen-inoculated leaves. There were no significant differences in the frequency of either germination or appressorium formation of the plant pathogen between mycorrhiza colonized and non-treated plants. It was also the same on the BABA pre-treated plants. However, the frequency of callose formation was significantly high on the leaves of G intraradices colonized plants compared to those of non-treated control plants at 5 days after challenge inoculation. On the leaves of BABA treated plants callose formation was not significantly high than those of non-treated, although the disease severity was more strongly suppressed. It was suggested that the resistance induced by colonization with G. intraradices might be related to the enhancement of callose formation at the penetrate sites on the leaves invaded by the pathogen, whereas resistance by BABA did not.

A Natural Fungus-derived Elicitor for Induction of Systemic Acquired Resistance (SAR) in Potato (진균 세포벽 유래 신물질을 이용한 감자의 전신적 획득저항성 유도)

  • Park, Hae-Jun;Kim, Hong-Gi
    • The Korean Journal of Mycology
    • /
    • v.35 no.1
    • /
    • pp.43-46
    • /
    • 2007
  • It was investigated that systemic acquired resistance (SAR) was induced in plant treated with a elicitor, which was derived from a non-virulent fungus. The elicitor, a hyphal cell wall component derived from fungus, induced a production of phytoalexin and a generation of reactive oxygen species (ROS) in potato treated with its low level concentrations. The effect of the fungus-derived elicitor was better than that of virulent pathogen-derived elicitor, which was well known in potato. These results, therefore, suggested potentcial use of fungus-derived elicitor as a new plant protector for commercial development.

Bacterial determinants involved in the induction of systemic resistance ana plant growth promotion in tobacco by Pseudomonas chlororaphis O6.

  • Han, Song-Hee;Cho, Baik-Ho;Kim, Young-Cheol
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.101.2-102
    • /
    • 2003
  • The ability of P. chlororaphis O6 to induce resistance to Erwinia carotovora subsp. carotovara SCCI and to promote growth in tobacco was demonstrated in microtiter assays on plants pre-inoculated at the root level with the bacteria before challenge with the leaf pathogen. To identify th bacterial determinants involved in induced systemic resistance and plant growth promotion, cell culture of O6 grown in King's medium B was fractionated with organic solvents and purified using various columns. in vivo and in vitro assays with samples from successive fractionation steps of the O6 supernatant led to the conclusion that antibacterial compounds were observed in aqueous layer, and to the isolation of fractions containing metabolites that retained most of the resistance-inducing activity (70:30, methanol:water) and the plant growth promotion (80:20 and 90:10, methanol:water) after ODS column chromatography. Although these molecules remain to be purified further and structurally characterized, its isolation is an addition to the range of determinants from plant growth-promoting rhizobacteria known to stimulate plant defence.

  • PDF

Effects of Arugula Vermicompost on the Root-Knot Nematode (Meloidogyne javanica) and the Promotion of Resistance Genes in Tomato Plants

  • Rostami, Mahsa;Karegar, Akbar;Ghorbani, Abozar
    • The Plant Pathology Journal
    • /
    • v.38 no.4
    • /
    • pp.261-271
    • /
    • 2022
  • Root-knot nematodes are the most important plant-parasitic nematodes worldwide. Many efforts have been made to find non-chemical, risk-free, and environmentally friendly methods for nematode control. In this study, the effects of compost and vermicompost of arugula (Eruca sativa) on Meloidogyne javanica were investigated in three glasshouse experiments. In addition, the expression of the defense-related genes nonexpressor of pathogenesis-related 1 (NPR1) and lipoxygenase 1 (LOX1) was detected in tomato plants treated with vermicompost of arugula at 0, 2, 7, and 14 days after nematode inoculation. The result showed that the vermicompost of arugula significantly reduced the reproduction factor of the nematode by 54.4% to 70.5% in the three experiments and increased the dry weight of shoots of infected tomato plants. Gene expression analysis showed that LOX1 expression increased on the second and seventh day after nematode inoculation, while NPR1 expression decreased. The vermicompost of arugula showed stronger nematode inhibitory potential than the vermicompost of animal manure. The vermicompost of arugula is superior to arugula compost in suppressing the activity of M. javaniva and reducing its impact. It manipulates the expression of resistance genes and could induce systemic resistance against root-knot nematodes.

Systemic Induction of the Small Antibacterial Compound in the Leaf Exudate During Benzothiadiazole-elicited Systemic Acquired Resistance in Pepper

  • Lee, Boyoung;Park, Yong-Soon;Yi, Hwe-Su;Ryu, Choong-Min
    • The Plant Pathology Journal
    • /
    • v.29 no.3
    • /
    • pp.350-355
    • /
    • 2013
  • Plants protect themselves from diverse potential pathogens by induction of the immune systems such as systemic acquired resistance (SAR). Most bacterial plant pathogens thrive in the intercellular space (apoplast) of plant tissues and cause symptoms. The apoplastic leaf exudate (LE) is believed to contain nutrients to provide food resource for phytopathogenic bacteria to survive and to bring harmful phytocompounds to protect plants against bacterial pathogens. In this study, we employed the pepper-Xanthomonas axonopodis system to assess whether apoplastic fluid from LE in pepper affects the fitness of X. axonopodis during the induction of SAR. The LE was extracted from pepper leaves 7 days after soil drench-application of a chemical trigger, benzothiadiazole (BTH). Elicitation of plant immunity was confirmed by significant up-regulation of four genes, CaPR1, CaPR4, CaPR9, and CaCHI2, by BTH treatment. Bacterial fitness was evaluated by measuring growth rate during cultivation with LE from BTH- or water-treated leaves. LE from BTH-treatment significantly inhibited bacterial growth when compared to that from the water-treated control. The antibacterial activity of LE from BTH-treated samples was not affected by heating at $100^{\circ}C$ for 30 min. Although the antibacterial molecules were not precisely identified, the data suggest that small (less than 5 kDa), heat-stable compound(s) that are present in BTH-induced LE directly attenuate bacterial growth during the elicitation of plant immunity.

Effects of Inula helenium on Inflammation and Insulin Resistance in Obesity-induced Insulin Resistance Mouse by High Fat Diet (목향(木香)이 고지방 식이에 의한 비만으로 유발된 인슐린 저항성 mouse의 염증 및 인슐린 저항성에 미치는 영향)

  • Oh, Jae-Seon;Ma, Young-Hun;Choi, Seung-Bum;Kim, Jong-Ho;Kim, Kyung-Kook;Jeon, Sang-Yun
    • The Journal of Internal Korean Medicine
    • /
    • v.35 no.4
    • /
    • pp.428-438
    • /
    • 2014
  • Objectives: Obesity is an important cause of insulin resistance that leads to obese type 2 diabetes. Recently it has been found that obesity is associated with adipose tissue accumulation which causes systemic inflammation. In this study, we investigated effects of Inula helenium on the inflammation in high fat diet-induced insulin resistance mouse. Methods: Insulin resistance was induced in C57BL/6 male mice (19~21 g) on a 60% fat diet. Mice were divided into 3 groups (n=6) of normal, control and Inula helenium. After 12 weeks, body weight, FBS, oral glucose tolerance test (OGTT), serum level of insulin, epididymal fat pad, liver weight and the gene expression of tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-6, interleukin (IL)-10 and cluster of differentiation (CD) 68 were measured. Also, adipose tissue macrophage was analyzed by fluorescence activated cell sorting. Results: Inula helenium significantly reduces oral glucose tolerance levels, insulin serum level and adipose tissue macrophage. Also Inula helenium increased IL-10 gene expression and decreased CD68 gene expression. Conclusions: These results show that Inula helenium has anti-insulin resistance and anti-inflammatory effects on a high fat diet-induced insulin resistance mouse model.

Salicylic Acid and Wounding Induce Defense-Related Proteins in Chinese Cabbage

  • Kim, Hong-Nam;Cha, Jae-Soon;Cho, Tae-Ju;Kim, Hak-Yong
    • Animal cells and systems
    • /
    • v.7 no.3
    • /
    • pp.213-219
    • /
    • 2003
  • The response of plants to pathogens and wounding is dependent upon very sensitive perception mechanisms. Although genetic approaches have revealed a variety of resistance genes that activate common defense responses, defense-related proteins are not well characterized in plants. Therefore, we used a proteomic approach to determine which defense-related proteins are induced by salicylic acid (SA) and wounding in Chinese cabbage. We found that SA and wounding induce pathogenesis-related protein 1a (PR1a) at both protein and mRNA levels using proteomics and Northern blot analysis, respectively. This indicates that our proteomic approach is useful for identifying defense-related proteins. We also identified several other proteins that are induced by SA or wounding. Among the seven SA-induced proteins identified, four may be defense-related, including defense-related protein, phospholipase D (PLD), resistance protein RPS2 homolog, and L-ascorbate peroxidase. Out of the six wounding-induced proteins identified, three may be defense-related: heat shock cognate protein 70 (HSC70), polygalacturonase, and peroxidase P7. The precise functions of these proteins in plant defense responses await further study. However, identification of the defense-related proteins described in this study should allow us to better understand the mechanisms and signal transduction pathways involved in defense responses in Chinese cabbage.