• Title/Summary/Keyword: Induced systemic resistance

Search Result 133, Processing Time 0.036 seconds

Tobamovirus Coat Protein CPCg Induces an HR-like Response in Sensitive Tobacco Plants

  • Ehrenfeld, Nicole;Canon, Paola;Stange, Claudia;Medina, Consuelo;Arce-Johnson, Patricio
    • Molecules and Cells
    • /
    • v.19 no.3
    • /
    • pp.418-427
    • /
    • 2005
  • When inoculated into sensitive tobacco Xanthi-nn plants, the crucifer and garlic-infecting Tobacco mosaic virus (TMV-Cg) induces local necrotic lesions that resemble those seen in the hypersensitive response (HR) of resistant tobacco plants. However, unlike these, tobacco Xanthi-nn plants do not become resistant to infection and the virus spreads systemically causing a severe disease characterized by necrotic lesions throughout the plant. To identify the viral protein that elicits this necrotic response, we used a set of hybrid viruses constructed by combination of TMV-Cg and the tobacco mosaic virus strain U1 (TMV-U1). In this study we present evidence that the coat protein of TMV-Cg (CPCg) is the elicitor of the necrotic response in tobacco Xanthi-nn plants. Local and systemic necrotic lesions induced by TMV-Cg and by the hybrid U1-CPCg -that carries CPCg in a TMV-U1 context- are characterized by cell death and by the presence of autoflorescent phenolic compounds and $H_2O_2$, just like the HR lesions. In addition, defense-related genes and detoxifying genes are induced in tobacco Xanthi-nn plants after TMV-Cg and U1-CPCg inoculation. We postulate that in our system, CPCg is recognized by sensitive tobacco plants that mount an incomplete defense response. We call this an HR-like since it is not enough to induce plant resistance.

Enhanced Onion Resistance against Stemphylium Leaf Blight Disease, Caused by Stemphylium vesicarium, by Di-potassium Phosphate and Benzothiadiazole Treatments

  • Kamal, Abo-Elyousr A.M.;Mohamed, Hussein M.A.;Aly, Allam A.D.;Mohamed, Hassan A.H.
    • The Plant Pathology Journal
    • /
    • v.24 no.2
    • /
    • pp.171-177
    • /
    • 2008
  • In this study, we investigated the induced defense response and protective effects against Stemphylium vesicarium by application of benzothiadiazole ($Bion^{(R)}$) and di-potassium phosphate salt $(K_2HPO_4)$ to onion. Onion leaves were sprayed with $Bion^{(R)}$ and $K_2HPO_4$, then inoculated 2 days later with a virulent strain of S. vesicarium under greenhouse conditions. Disease severity and activities of peroxidase (PO), polyphenoloxidase, phenylalanine ammonia-lyase (PAL) and phenol contents were evaluated in the treated leaf tissues. Reduction in the disease severity was observed in plants treated with $Bion^{(R)}$ and $K_2HPO_4$. Onion plants treated with $Bion^{(R)}$ and $K_2HPO_4$ and inoculated with the pathogen showed significantly higher PAL activity, PO activity, and phenol contents than inoculated water-treated plants 2 days after the treatment. In conclusion, the results of this study provide evidence that application of simple non-toxic chemical solutions as di-potassium phosphate and $Bion^{(R)}$ can control Stemphylium leaf blight of onion.

Evidence for Volatile Memory in Plants: Boosting Defence Priming through the Recurrent Application of Plant Volatiles

  • Song, Geun Cheol;Ryu, Choong-Min
    • Molecules and Cells
    • /
    • v.41 no.8
    • /
    • pp.724-732
    • /
    • 2018
  • Plant defence responses to various biotic stresses via systemic acquired resistance (SAR) are induced by avirulent pathogens and chemical compounds, including certain plant hormones in volatile form, such as methyl salicylate and methyl jasmonate. SAR refers to the observation that, when a local part of a plant is exposed to elicitors, the entire plant exhibits a resistance response. In the natural environment, plants are continuously exposed to avirulent pathogens that induce SAR and volatile emissions affecting neighbouring plants as well as the plant itself. However, the underlying mechanism has not been intensively studied. In this study, we evaluated whether plants "memorise" the previous activation of plant immunity when exposed repeatedly to plant defensive volatiles such as methyl salicylate and methyl jasmonate. We hypothesised that stronger SAR responses would occur in plants treated with repeated applications of the volatile plant defence compound MeSA than in those exposed to a single or no treatment. Nicotiana benthamiana seedlings subjected to repeated applications of MeSA exhibited greater protection against Pseudomonas syringae pv. tabaci and Pectobacterium carotovorum subsp. carotovorum than the control. The increase in SAR capacity in response to repeated MeSA treatment was confirmed by analysing the defence priming of the expression of N. benthamiana Pathogenesis-Related 1a (NbPR1a) and NbPR2 by quantitative reverse-transcription PCR compared with the control. We propose the concept of plant memory of plant defence volatiles and suggest that SAR is strengthened by the repeated perception of volatile compounds in plants.

Biological Control of Oomycete Soilborne Diseases Caused by Phytophthora capsici, Phytophthora infestans, and Phytophthora nicotianae in Solanaceous Crops

  • Elena Volynchikova;Ki Deok Kim
    • Mycobiology
    • /
    • v.50 no.5
    • /
    • pp.269-293
    • /
    • 2022
  • Oomycete pathogens that belong to the genus Phytophthora cause devastating diseases in solanaceous crops such as pepper, potato, and tobacco, resulting in crop production losses worldwide. Although the application of fungicides efficiently controls these diseases, it has been shown to trigger negative side effects such as environmental pollution, phytotoxicity, and fungicide resistance in plant pathogens. Therefore, biological control of Phytophthora-induced diseases was proposed as an environmentally sound alternative to conventional chemical control. In this review, progress on biological control of the soilborne oomycete plant pathogens, Phytophthora capsici, Phytophthora infestans, and Phytophthora nicotianae, infecting pepper, potato, and tobacco is described. Bacterial (e.g., Acinetobacter, Bacillus, Chryseobacterium, Paenibacillus, Pseudomonas, and Streptomyces) and fungal (e.g., Trichoderma and arbuscular mycorrhizal fungi) agents, and yeasts (e.g., Aureobasidium, Curvibasidium, and Metschnikowia) have been reported as successful biocontrol agents of Phytophthora pathogens. These microorganisms antagonize Phytophthora spp. via antimicrobial compounds with inhibitory activities against mycelial growth, sporulation, and zoospore germination. They also trigger plant immunity-inducing systemic resistance via several pathways, resulting in enhanced defense responses in their hosts. Along with plant protection, some of the microorganisms promote plant growth, thereby enhancing their beneficial relations with host plants. Although the beneficial effects of the biocontrol microorganisms are acceptable, single applications of antagonistic microorganisms tend to lack consistent efficacy compared with chemical analogues. Therefore, strategies to improve the biocontrol performance of these prominent antagonists are also discussed in this review.

Suppression of Bacterial Wilt with Fuorescent Pseudomonads, TS3-7 strain (Fluorescent siderophore 생산균주, TS3-7에 의한 풋마름병 발병 억제)

  • Kim, Ji-Tae;Cho, Hong-Bum;Kim, Shin-Duk
    • Applied Biological Chemistry
    • /
    • v.48 no.3
    • /
    • pp.296-300
    • /
    • 2005
  • Among the root colonizing and plant growth promoting bacteria isolated from the bacterial wilt suppressive soil, five strains were detected to produce siderophores by CAS agar assay. The most effective isolate, TS3-7 strain induced significant suppression of bacterial wilt disease in tomato and pepper plants. Seed treatment followed by soil drench application with this strain resulted in over 80% reduction of bacterial wilt disease compared with the control. Significant disease suppression by TS3-7 strain was related to the production of siderophore. Besides iron competition, induction of resistance of the host plant with siderophore was suggested to be another mode of action that suppress bacterial wilt, based on the lack of direct antibiosis against pathogen in vitro. According to Bergey's Manual of Systemic Bacteriology and 16S rDNA sequence data, TS3-7 stain was identified as Pseudomonas sp. TS3-7.

New Fungicides: Opportunities and Challenges - A Case Study with Dimethomorph

  • Spadafora, V. J.;Sieverding, E.
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 1998.06a
    • /
    • pp.50-69
    • /
    • 1998
  • Dimethomorph is a novel fungicide with a high level of activity against diseases induced by certain Oomycetes, including fungal populations that are resistant to other products. In several ways, this fungicide illustrates the opportunities and challenges presented by many modern pesticides. The specific mode of action, which affects cell wall formation, is associated with a very high level of performance and low dose rates under field conditions. These low dose rates, combined with a low level of toxicity to non-target organisms present an outstanding safety profile. This same highly-specific mode of action, however, limits the spectrum of activity and suggests the need for a resistance management plan, both of which must be addressed in new product development. In addition, the biological and physiochemical properties of this, and other new products are not adequately described by the traditional classification of fungicides into“protectant”and“systemic”types. These unique profiles provide novel and useful products for disease control.

  • PDF

Characteristics of Potato Virus Y (PVY) Mutant Isolated from PVY Resistance Breeding Line in Korea (국내 감자바이러스 Y (PVY) 저항성 육성 계통에서 분리한 PVY Mutant의 특성)

  • Kim, Jae-Hyun;Kuem, Wan-Soo;Lee, Sin-Ho;Kim, Jeong-Soo;Jeon, Yong-Ho;Jung, Suk-Hun;Chung, Youl-Young;Park, Yong-Hack
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.28 no.2
    • /
    • pp.100-110
    • /
    • 2006
  • A mutant of Potato vims Y (PVY) was occurred in PVY resistance flue-cured tobacco breeding line KF0402 $(TC1146{\times}KF117)$ showing vein necrosis at Suwon in Korea. This isolate, PVY-SWM, was differentiated from other PVY based on biological properties and nucleotide sequence analyses of coat protein gene. PVY-SWM caused typical symptoms on 21 indicator plants as compared to the PVY-TOJC37. Remarkably, the PVY-SWM induced distinctly different symptom of systemic vein necrosis on tobacco cultivars V.SCR, PBD6, TN86, TN90, Virgin A Mutant (VAM), Wislica, NC744, KB108 and KB111, which were reported to have the recessive potyvirus resistance gene va. In RT-PCR assays with specific primers for detection of PVY, a single band of about 800bp in length was produced. The amplified DNA was cloned and the nucleotide sequence was determined. The coat protein gene of PVY-SWM showed 88.4%-99.0% and 92.5%-98.5% identities to the 12 different PVY isolates of Genbank Database at the nucleotide and amino acidi respectively. Multiple alignments as well as cluster dendrograms of PVY-SWM isolate revealed close phylogenetic relationship to the $PVY^{NTN}$ subgroup.

Identification of an ISR-Related Metabolite Produced by Pseudomonas chlororaphis O6 against the Wildfire Pathogen Pseudomonas syringae pv. tabaci in Tobacco

  • Park, Myung-Ryeol;Kim, Young-Cheol;Park, Ju-Yeon;Han, Song-Hee;Kim, Kil-Yong;Lee, Sun-Woo;Kim, In-Seon
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.10
    • /
    • pp.1659-1662
    • /
    • 2008
  • Pseudomonas chlororaphis O6 exhibits induced systemic resistance (ISR) against P. syringae pv. tabaci in tobacco. To identify one of the ISR metabolites, O6 cultures were extracted with organic solvents, and the organic extracts were subjected to column chromatography followed by spectroscopy analyses. The ISR bioassay-guided fractionation was carried out for isolation of the metabolite. High-resolution mass spectrometric analysis of the metabolite found $C_{9}H_{9}O_{3}N$ with an exact mass of 179.0582. LC/MS analysis in positive mode showed an $(M+H)^{+}$ peak at m/z 180. Nuclear magnetic resonance ($^{1}H,\;^{13}C$) analyses identified all protons and carbons of the metabolite. Based on the spectroscopy data, the metabolite was identified as 4-(aminocarbonyl) phenylacetate (4-ACPA). 4-ACPA applied at 68.0 mM exhibited ISR activity at a level similar to 1.0 mM salicylic acid. This is the first report to identify an ISR metabolite produced by P. chlororaphis O6 against the wildfire pathogen P. syringae pv. tabaci in tobacco.

Effect of Vitamin E Treatments on The Humoral and Cellular Immune Responses in Mice. - Animal experiment for nursing care of vitamin E-deficient patients- (비타민 E 투여가 마우스의 체액성 및 세포성 면역반응에 미치는 영향 -비타민 E 결핍환자의 간호중재 개발을 위한 동물실험 -)

  • 김금재
    • Journal of Korean Academy of Nursing
    • /
    • v.23 no.4
    • /
    • pp.528-543
    • /
    • 1993
  • Vitamin E, which has its advocates in the treatment of diabetes mellitus. autoimmune disease, cancer and peripheral vascular and thromboembolic disease, has now been alleged to have a powerful antioxident effect and to affect various biological activities such as fertility factor, inhibition of human platelet aggregation and stabilization of biological membranes. The present study was designed to test whether vitamin I(alpha-tocopherol) can : (1) enhance the hemagglutinin response to sheep red blood cells (SRBC), (2) modulate Arthus and delayed type hypersensitivity(DTH) to SRBC and contact hypersensitivity to dinitrofluorobenzene (DNFB). (3) enhance the mitogenic response of murine splenocyte, (4) decrease the recovery of Cryptococcus neoformans from brain, lung, liver, spleen and kidney of infected mice and (5) have an inhibitory or enhancing effect on the induction of active systemic anaphylaxis(ASA) induced by chicken-gamma globulin (CGG) in mice. Mice were given either intramuscular injections of 0.3ml (300mg) of vitamin I before immunization or were infection for 10 consecutive days or were given by vitamin I esophageal intubation, 0.1ml(100mg), for 20 days before sacrifice for the mitogenic response experiments. It was found that vitamin E treated mice showed a significant enhancement in hemagglutinin response, Arthus reaction and DTH to SRBC and contact hypersensitivity to DNFB. There was no significant difference in the mitogenic response to phytohemagglutinin(PHA), but the response to concanavalin A(ConA) or pokeweed mitogem(PWM) was increased in vitamin E-treated mice. Interestingly, the vitamin E administration before C. neoformans infection decreased significantly the recovery of C. neoformans from brain lung, liver, spleen and kidney of the infected mice as compared with that of the control mice, strongly suggesting that vitamin E pretreatment may increase the resistance of mice to the fungal infection. Unexpectedly, vitamin E administration enhanced the production of CGG -induced ASA. Taken together, it can be concluded that vitamin I administration may in-crease the humoral and cellular immune response and resistance. to C. neoformans infection, but enhance the induction of ASA to CGG. Further studies are necessary to clarify the underlying mechanism accounting for these effects.

  • PDF