Tobamovirus Coat Protein CPCg Induces an HR-like Response in Sensitive Tobacco Plants

  • Ehrenfeld, Nicole (Departamento de Genetica Moleculary Microbiologia, P. Universidad Catolica de Chile) ;
  • Canon, Paola (Departamento de Genetica Moleculary Microbiologia, P. Universidad Catolica de Chile) ;
  • Stange, Claudia (Departamento de Genetica Moleculary Microbiologia, P. Universidad Catolica de Chile) ;
  • Medina, Consuelo (Departamento de Genetica Moleculary Microbiologia, P. Universidad Catolica de Chile) ;
  • Arce-Johnson, Patricio (Departamento de Genetica Moleculary Microbiologia, P. Universidad Catolica de Chile)
  • Received : 2005.02.03
  • Accepted : 2005.03.11
  • Published : 2005.06.30

Abstract

When inoculated into sensitive tobacco Xanthi-nn plants, the crucifer and garlic-infecting Tobacco mosaic virus (TMV-Cg) induces local necrotic lesions that resemble those seen in the hypersensitive response (HR) of resistant tobacco plants. However, unlike these, tobacco Xanthi-nn plants do not become resistant to infection and the virus spreads systemically causing a severe disease characterized by necrotic lesions throughout the plant. To identify the viral protein that elicits this necrotic response, we used a set of hybrid viruses constructed by combination of TMV-Cg and the tobacco mosaic virus strain U1 (TMV-U1). In this study we present evidence that the coat protein of TMV-Cg (CPCg) is the elicitor of the necrotic response in tobacco Xanthi-nn plants. Local and systemic necrotic lesions induced by TMV-Cg and by the hybrid U1-CPCg -that carries CPCg in a TMV-U1 context- are characterized by cell death and by the presence of autoflorescent phenolic compounds and $H_2O_2$, just like the HR lesions. In addition, defense-related genes and detoxifying genes are induced in tobacco Xanthi-nn plants after TMV-Cg and U1-CPCg inoculation. We postulate that in our system, CPCg is recognized by sensitive tobacco plants that mount an incomplete defense response. We call this an HR-like since it is not enough to induce plant resistance.

Keywords

Acknowledgement

Supported by : FONDECYT

References

  1. Arce-Johnson, P., Medina, C., Padgett, H. S., Huanca, W., and Espinoza, C. (2003) Analysis of local and systemic spread of the crucifer-infecting TMV-Cg virus in tobacco and several Arabidopsis thaliana ecotypes. Funct. Plant. Biol. 30, 401- 408 https://doi.org/10.1071/FP02145
  2. Asseling A. and Zaitling, M (1998) Characterization of a second protein associated with virions of tobacco mosaic virus. Virology 91, 173-181 https://doi.org/10.1016/0042-6822(78)90365-3
  3. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D., Seidma, J. G., et al. (1990) Current Protocols in Molecular Biology, John Wyley & Sons, New York
  4. Baker, C. J. and Mock, N. M. (1994) An improved method for monitoring cell death in cell suspension and leaf disc assays using Evans blue. Plant Cell Tissue and Organ Culture 39, 7-12 https://doi.org/10.1007/BF00037585
  5. Bendahmane, A., Kanyuka, K., and Baulcombe, D. (1999a) The Rx gene from potato controls separates virus resistance and cell death responses. Plant Cell 11, 781-791 https://doi.org/10.1105/tpc.11.5.781
  6. Bendahmane, M., Koo, M., Karrer, E., and Beachy, R. N. (1999b) Display of epitopes on the surface of tobacco mosaic virus: impact of charge and isoelectric point of the epitope on virus-host interactions. J. Mol. Biol. 290, 9-20 https://doi.org/10.1006/jmbi.1999.2860
  7. Berzal-Herranz, A., de la Cruz, A., Tenllado, F., Diaz-Ruiz, J. R., and Lopez, L. (1995) The capsicum L3 gene-mediated resistance against the tobamovirus is elicited by the coat protein. Virology 209, 498-505 https://doi.org/10.1006/viro.1995.1282
  8. Century, K. S., Holub, E. B., and Staskawicz, B. J. (1995) NDR1, a locus of Arabidopsis thaliana that is required for disease resistance to both a bacterial and a fungal pathogen. Proc. Natl. Acad. Sci. USA 92, 6597-6601
  9. Chivasa, S. and Carr, J. P. (1998) Cyanide restores N-gene mediated resistance to tobacco mosaic virus in transgenic tobacco expressing salicylic acid hydroxylase. Plant Cell 10, 1489-1498 https://doi.org/10.1105/tpc.10.9.1489
  10. Clough, S. H., Fengler, K. A., Yu, I., Lippok, B., Smith, R. K., et al. (2000) The Arabidopsis dndl defense no death gene encodes a mutated cyclic nucleotide-gated ion channel. Proc. Natl. Acad. Sci. USA 97, 9323-9328
  11. Cole, A. B., Király, L., Lane, L. C., Wiggins, B. E., Ross, K., et al. (2004) Temporal expression of PR-1 and Enhanced mature plant resistance to virus infection is controlled by a single dominant gene in a new Nicotiana hybrid. Mol. Plant- Microbe Interact. 17, 976-985 https://doi.org/10.1094/MPMI.2004.17.9.976
  12. Cooley, M. B., Pathirana, S., Wu, H.-J., Kachroo, P., and Klessig, D. F. (2000) Members of the Arabidopsis HRT/RPP8 family of resistance genes confer resistance to both viral and oomycete pathogens. Plant Cell 12, 663-676 https://doi.org/10.1105/tpc.12.5.663
  13. Culver, N. (2002) Tobacco mosaic virus assembly and dissasambly: determinats in pathogenity and resistance. Annu. Rev. Pthytopathol. 40, 287-308 https://doi.org/10.1146/annurev.phyto.40.120301.102400
  14. Culver, J. N. and Dawson, W. O. (1989) Tobacco mosaic virus CP: an elicitor of the hypersensitive reaction but not required for the development of mosaic symptoms in Nicotiana sylvestris. Virology 173, 755-758 https://doi.org/10.1016/0042-6822(89)90592-8
  15. Dardick, C. D. and Culver, J. N. (1997) Tobamovirus coat proteins: elicitors of the hypersensitive response in Solanum melongena (eggplant). Mol. Plant-Microbe Interact. 12, 247- 251
  16. Dempsey, T., Shah, J., and Klessig, D. (1999) Salicylic acid and disease resistance in plant. Crit. Rev. Plant Sci. 18, 547-575
  17. Dietrich, R. A., Delaney, T. P., Uknes, S. J., Ward, E. R., Ryals, J. A., et al. (1994) Arabidopsis mutants simulating disease resistance response. Cell 77, 565-577 https://doi.org/10.1016/0092-8674(94)90218-6
  18. Dinesh-Kumar, S. P., Tham, W. H., and Baker, B. J. (2000) Structure-function analysis of the tobacco mosaic virus resistance gene N. Proc. Natl. Acad. Sci. USA 97, 14789-14794
  19. Dorey, S., Baillieul, F., Pierrel, M.-A., Saindrenan, P., Fritig, B., et al. (1997) Spatial and temporal induction of cell death, defense genes, and accumulation of salicylic acid in tobacco leaves reacting hypersensitively to a fungal glycoprotein elicitor. Mol. Plant-Microbe Interact. 10, 646-655 https://doi.org/10.1094/MPMI.1997.10.5.646
  20. Grüner, R., Strompen, G., Pfitzner, A., and Pfitzner, U. (2003) Salicylic acid and the hypersensitive response initiate distinct signal transduction pathways in tobacco that converge on the as-1-like element of the PR-1a promoter. Eur. J. Biochem. 270, 4876-4886 https://doi.org/10.1046/j.1432-1033.2003.03888.x
  21. Hammond-Kosack, K. E. and Jones, J. D. G. (1996) Plant disease resistance genes. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 48, 575-607 https://doi.org/10.1146/annurev.arplant.48.1.575
  22. Hammond-Kosack, K. E. and Parker, J. E. (2003) Deciphering plant-pathogen communication: fresh perspective for molecular resistance breeding. Curr. Opin. Biotechnol. 14, 177-193 https://doi.org/10.1016/S0958-1669(03)00035-1
  23. Heath, M. C. (2000) Hypersensitive response-related death. Plant Mol. Biol. 44, 321-334 https://doi.org/10.1023/A:1026592509060
  24. Hilf, M. E. and Dawson, W. O. (1993) The Tobamovirus coat protein functions as a host specific determinant of long distance movement. Virology 193, 106-114 https://doi.org/10.1006/viro.1993.1107
  25. Hiraga, S., Ito, H., Yamakawa, H., Ohtsubo, N., Seo, S., et al. (2000) An HR-induced tobacco peroxidase gene is responsive to spermine, but not to salicylate, methyl jasmonate, and ethylene. Mol. Plant Microbe Interact. 13, 210-216 https://doi.org/10.1094/MPMI.2000.13.2.210
  26. Holt, C. A. and Beachy, R. N. (1991) In vivo complementation of infectious transcripts from mutant tobacco mosaic virus cDNA in transgenic plants. Virology 181, 109-117 https://doi.org/10.1016/0042-6822(91)90475-Q
  27. Kachroo, P., Yoshioka, K., Shah, J., Dooner, H. K., and Klessig, D. F. (2000) Resistance to Turnip crinkle virus in Arabidopsis is regulated by two host genes and is salicylic acid dependent but NPR1, ethylene, and Jasmonate independent. Plant Cell 12, 677-690 https://doi.org/10.1105/tpc.12.5.677
  28. Kunkel, B. N. and Brooks, D. M. (2002) Cross talk between signaling pathways in pathogen defense. Curr. Opin. Plant Biol. 5, 325-331 https://doi.org/10.1016/S1369-5266(02)00275-3
  29. Kurihara, Y. and Watanabe, Y. (2004) A TMV-Cg mutant with a truncated coat protein induces cell-death resembling the hypersensitive response in Arabidopsis. Mol Cells 17, 334-339
  30. Lawton, K., Weymann, K., Friedrich, L., Vernooij, B., Uknes, S., et al. (1995) Systemic acquired resistance in Arabidopsis requires salicylic acid but not ethylene. Mol. Plant Microbe Interact. 8, 863-870 https://doi.org/10.1094/MPMI-8-0863
  31. Logeman, J., Schell, J., and Willmitzer, L. (1987) Improved method for the isolation of RNA from plants tissues. Anal. Biochem. 163, 16-20 https://doi.org/10.1016/0003-2697(87)90086-8
  32. Maxwell, D. P., Wang, Y., and McIntosh, L. (1999) The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc. Natl. Acad. Sci. USA 96, 8271–8276
  33. Nimchuck, Z., Euglem, T., Holt III, B. F., and Dangl, J. L. (2003) Recognition and response in the plant immune system. Annu. Rev. Genet. 37, 579-609 https://doi.org/10.1146/annurev.genet.37.110801.142628
  34. Nürnberger, T., Brunner, F., Kemmerling, B., and Piater, L. (2004) Innate immunity in plants and animals, striking similarities and obvious differences. Immunol. Rev. 198, 249-266 https://doi.org/10.1111/j.0105-2896.2004.0119.x
  35. Ordog, S. H., Higgins, V. J., and Vanlerberghe, G. C. (2002) Mitochondrial alternative oxidase is not a critical component of plant resistance but may play a role in the hypersensitive response. Plant Physiol. 129, 1859-1865
  36. Overmyer, K., Brosche, M., and Kangasjarvi, J. (2003) Reactive oxygen species and hormonal control of cell death. Trends Plant Sci. 8, 335-342 https://doi.org/10.1016/S1360-1385(03)00135-3
  37. Padgett, H. and Beachy, R. N. (1993) Analysis of a tobacco mosaic virus capable of overcome N gene-mediated resistance. Plant Cell 5, 577-586 https://doi.org/10.1105/tpc.5.5.577
  38. Padgett, H. S., Watanabe, Y., and Beachy, R. N. (1997) Identification of the TMV replicase sequence that activates the N gene-mediated hypersensitive response. Mol. Plant- Microbe Interact. 10, 709-715 https://doi.org/10.1094/MPMI.1997.10.6.709
  39. Pereda, S., Ehrenfeld, N., Medina, C., and Arce-Johnson, P. (2000) Comparative analysis of TMV-U1 and TMV-Cg detection methods in infected Arabidopsis thaliana. J. Virol. Methods 90, 135-142 https://doi.org/10.1016/S0166-0934(00)00230-5
  40. Tang, X., Xie, M., Kim, Y. J., Zhou, J., Klessig, D. F., et al. (1999) Overexpression of Pto activates defense response and confers broad resistance. Plant Cell 11, 15-29 https://doi.org/10.1105/tpc.11.1.15
  41. Tao, Y., Xie, Z., Chen, W., Glazebrook, J., Chang, H. S., et al. (2003) Quantitative nature of Arabidopsis response during compatible and incompatible interactions with bacterial pathogen Pseudomona siringae. Plant Cell 15, 317-330 https://doi.org/10.1105/tpc.007591
  42. Thordal-Christensen, H., Zhang, Z., Wei, Y. D., and Collinge, D. B. (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J. 11, 1187- 1194 https://doi.org/10.1046/j.1365-313X.1997.11061187.x
  43. Vleeshouwers, V. G., van Dooijeweert, W., Govers, F., Kamoun, S., and Colon, L. T. (2000) The hypersensitive response is associated with host and nonhost resistance to Phytophthora infestans. Planta 210, 853-864 https://doi.org/10.1007/s004250050690
  44. Yu, I., Parker, J., and Bent, A. F. (1998) Gene- for- gene disease resistance without the hypersensitive response in Arabidopsis dndl1 mutant. Proc. Natl. Acad. Sci. USA 95, 7819-7824