• Title/Summary/Keyword: Induced disease resistance

Search Result 242, Processing Time 0.026 seconds

The Functional Role of Lysosomes as Drug Resistance in Cancer (항암제 내성에 대한 라이소좀의 역할)

  • Woo, Seon Min;Kwon, Taeg Kyu
    • Journal of Life Science
    • /
    • v.31 no.5
    • /
    • pp.527-535
    • /
    • 2021
  • Lysosomes are organelles surrounded by membranes that contain acid hydrolases; they degrade proteins, macromolecules, and lipids. According to nutrient conditions, lysosomes act as signaling hubs that regulate intracellular signaling pathways and are involved in the homeostasis of cells. Therefore, the lysosomal dysfunction occurs in various diseases, such as lysosomal storage disease, neurodegenerative diseases, and cancers. Multiple forms of stress can increase lysosomal membrane permeabilization (LMP), resulting in the induction of lysosome-mediated cell death through the release of lysosomal enzymes, including cathepsin, into the cytosol. Here we review the molecular mechanisms of LMP-mediated cell death and the enhancement of sensitivity to anticancer drugs. Induction of partial LMP increases apoptosis by releasing some cathepsins, whereas massive LMP and rupture induce non-apoptotic cell death through release of many cathepsins and generation of ROS and iron. Cancer cells have many drug-accumulating lysosomes that are more resistant to lysosome-sequestered drugs, suggesting a model of drug-induced lysosome-mediated chemoresistance. Lysosomal sequestration of hydrophobic weak base anticancer drugs can have a significant impact on their subcellular distribution. Lysosome membrane damage by LMP can overcome resistance to anticancer drugs by freeing captured hydrophobic weak base drugs from lysosomes. Therefore, LMP inducers or lysosomotropic agents can regulate lysosomal integrity and are novel strategies for cancer therapy.

Analysis of SARS-CoV-2 Mutations after Nirmatrelvir Treatment in a Lung Cancer Xenograft Mouse Model

  • Bo Min Kang;Dongbum Kim;Jinsoo Kim;Kyeongbin Baek;Sangkyu Park;Ha-Eun Shin;Myeong-Heon Lee;Minyoung Kim;Suyeon Kim;Younghee Lee;Hyung-Joo Kwon
    • Biomolecules & Therapeutics
    • /
    • v.32 no.4
    • /
    • pp.481-491
    • /
    • 2024
  • Paxlovid is the first approved oral treatment for coronavirus disease 2019 and includes nirmatrelvir, a protease inhibitor targeting the main protease (Mpro) of SARS-CoV-2, as one of the key components. While some specific mutations emerged in Mpro were revealed to significantly reduce viral susceptibility to nirmatrelvir in vitro, there is no report regarding resistance to nirmatrelvir in patients and animal models for SARS-CoV-2 infection yet. We recently developed xenograft tumors derived from Calu-3 cells in immunodeficient mice and demonstrated extended replication of SARS-CoV-2 in the tumors. In this study, we investigated the effect of nirmatrelvir administration on SARS-CoV-2 replication. Treatment with nirmatrelvir after virus infection significantly reduced the replication of the parental SARS-CoV-2 and SARS-CoV-2 Omicron at 5 days post-infection (dpi). However, the virus titers were completely recovered at the time points of 15 and 30 dpi. The virus genomes in the tumors at 30 dpi were analyzed to investigate whether nirmatrelvir-resistant mutant viruses had emerged during the extended replication of SARS-CoV-2. Various mutations in several genes including ORF1ab, ORF3a, ORF7a, ORF7b, ORF8, and N occurred in the SARS-CoV-2 genome; however, no mutations were induced in the Mpro sequence by a single round of nirmatrelvir treatment, and none were observed even after two rounds of treatment. The parental SARS-CoV-2 and its sublineage isolates showed similar IC50 values of nirmatrelvir in Vero E6 cells. Therefore, it is probable that inducing viral resistance to nirmatrelvir in vivo is challenging differently from in vitro passage.

Effects of Astragalus Membranaceus, Innamomum Cassia, Phellodendron Amurensis(BHH10) on MC3T3-E1 Cells Proliferation, Differntiation and Bone Mineralized Formation (MC3T3-E1 세포주에서 황기.계지.황백 처방(BHH10)의 골형성 촉진 효능 연구)

  • Lee, Mi Lim;Huh, Jeong Eun;Nam, Dong Woo;Seon, Jong In;Kang, Jung Won;Kim, Sung Hoon;Choi, Do Young;Lee, Jae Dong
    • Journal of Acupuncture Research
    • /
    • v.29 no.6
    • /
    • pp.11-21
    • /
    • 2012
  • Objectives : BHH10 is traditional medicine herb used for enhancing body resistance against various diseases. The aim of this study was to identify BHH10 extract induces osteogenic activity in human osteoblast-like MC3T3-E1 cells. Methods : MC3T3-E1, pre-osteoblast cell line, were treated with BHH10 of various concentrations($0.1{\mu}g/mL$, $1{\mu}g/mL$, $10{\mu}g/mL$). And then, the effect of BHH10 on osteoblast differentiation was examined by alkaline phosphatase(ALP) activity, von Kossa staining and RT-PCR for osteoblast differentiation markers such as osteocalcin(OCN), osteopontin(OPN). Results : BHH10 had dose-dependent effect on the viability of osteoblastic cells, and dose-dependently increased alkaline phosphatase(ALP) activity. BHH10 markedly increased mRNA expression for OCN, OPN in MC3T3-E1 cells. Also, BHH10 significantly induced mineralization in the culture of MC3T3-E1 cells. Conclusions : In conclusion, these results propose that BHH10 can play an important role in osteoblastic bone formation, osteogenesis, and may possibly lead to the development of bone-forming drugs.

Control of Crisphead Lettuce Damping-off and Bottom Rot by Seed Coating with Alginate and Pseudomonas aeruginosa LY-11

  • Heo, Kwang-Ryool;Lee, Kwang-Youll;Lee, Sang-Hyun;Jung, Soon-Je;Lee, Seon-Woo;Moon, Byung-Ju
    • The Plant Pathology Journal
    • /
    • v.24 no.1
    • /
    • pp.67-73
    • /
    • 2008
  • Seedling damping-off and bottom rot caused by Rhizoctonia solani are yield limiting diseases of crisphead lettuce. To provide biocontrol measure in the management of the diseases, biocontrol strain Pseudomonas aeruginosa LY-11 was isolated from lettuce rhizosphere and introduced into crisphead lettuce rhizosphere by the seed coating delivery method. Alginate was used as a coating material to generate beads containing $10^6-10^{6.5}$ colony-forming units (CFUs) of viable bacterial cells of LY-11. When seeds germinated from the alginate beads containing the strain LY-11, the bacteria established mostly in plant rhizosphere to maintain at least $10^4$ CFU per gram of plant tissues. Crisphead lettuce seedlings germinated from the entrapped seeds were less affected from damping-off and bottom rot with disease control values of 70.4% and 85.4% respectively. Although P. aeruginosa LY-11 colonized plant rhizosphere and not phyllosphere, the result indicated that bottom rot caused by the foliar inoculation of R. solani was effectively reduced by the rhizobacteria. All data suggested that immobilized rhizobacterial application in seeds by alginate coating could control damping-off and induce induced systemic resistance of crisphead lettuce to reduce bottom rot.

Effects of Uncaria rhynchophylla Extracts on Differentiation and Bone Mineralized Formation in Human Osteoblast-like SaOS-2 cells

  • Huh, Jeong-Eun;Baek, Yong-Hyeon;Choi, Do-Young;Lee, Jae-Dong;Park, Dong-Suk
    • The Journal of Korean Medicine
    • /
    • v.28 no.4
    • /
    • pp.158-167
    • /
    • 2007
  • Background & Objective : Uncaria rhynchophylla is traditional medicine herb used for enhancing body resistance against various diseases. The aim of this study was to identify if Uncaria rhynchophylla extracts induce osteogenic activity in human osteoblast-like SaOS-2 cells. Methods : The osteogenic activity of Uncaria rhynchophylla was evaluated on cell proliferation assay by WST-8, and osteoblast-specific genes, such as VEGF, type I collagen (Col I), osteocalcin (OCN), and osteopontin (OPN) by RT-PCR analysis and ELISA assay in osteoblasts-like SaOS-2 cells. Bone mineralization was stained with Alizalin red method. Results : Uncaria rhynchophylla had significantly increased cell proliferation at a dose dependent manner in human osteoblast-like SaOS-2 cells. Uncaria rhynchophylla markedly increased alkaline phosphatase (ALP), vascular endothelial growth factor (VEGF) mRNA expression at 7 days and dose dependently increased ALP activity and VEGF secretion in human osteoblast-like SaOS-2 cells. Also, Uncaria rhynchophylla time-dependently increased type I collagen (Col I), osteopontin (OPN), and osteocalcin (OCN) mRNA in SaOS-2 cells. Extracellular accumulation of proteins such as Col I and OCN was maximal increased by Uncaria rhynchophylla at 10 ${\mu}g/ml$. Also, Uncaria rhynchophylla significantly induced mineralization in the culture of SaOS-2 cells. Conclusion : This study showed that Uncaria rhynchophylla had enhanced proliferation, ALP activity, VEGF, bone matrix proteins such as OCN, OPN, and Col I, and mineralization in SaOS-2 cells. These results propose that Uncaria rhynchophylla can play an important role in osteoblastic bone formation, osteogenesis, and may possibly lead to the development of bone-forming drugs.

  • PDF

Comparison of biological and chemical assays for measuring the concentration of residual antibiotics after treatment with gamma irradiation

  • Nam, Ji-Hyun;Shin, Ji-Hye;Kim, Tae-Hun;Yu, Seungho;Lee, Dong-Hun
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.614-621
    • /
    • 2020
  • Antibiotic pollution is one of the factors contributing to the spread of antibiotic-resistant bacteria in the environment. Advanced oxidation and irradiation processes have been introduced to eliminate antibiotics from water and wastewater. However, few studies have reported the toxic effects of residual antibiotics and their byproducts induced by a treatment system. In this study, we compared the efficacies of chemical (high-performance liquid chromatography (HPLC)) and biological (antimicrobial susceptibility test) assays for measuring the concentrations of residual antibiotics after gamma irradiation for degrading amoxicillin, cephradine, lincomycin, and tetracycline. The concentrations of residual antibiotics estimated using the two assay methods were almost identical, except cephradine. In the case of cephradine, inhibited bacterial growth was observed that was equivalent to twice the concentration measured by HPLC in the samples subjected to gamma irradiation. The observed inhibition of bacterial growth suggested the generation of potentially toxic intermediates following antibiotic degradation. These results indicate that biological and chemical assays should be used in concert for monitoring antibiotic contamination and the toxic derivatives of antibiotic degradation. The results demonstrate that these four antibiotics can be decomposed by 2.0 kGy gamma-irradiation without toxic effects of their byproducts.

Augmenting Plant Immune Responses and Biological Control by Microbial Determinants (새로운 생물적 방제 전략: 미생물 인자 유래 식물면역 유도)

  • Lee, Sang Moo;Chung, Joon-hui;Ryu, Choong-Min
    • Research in Plant Disease
    • /
    • v.21 no.3
    • /
    • pp.161-179
    • /
    • 2015
  • Plant have developed sophisticated defence mechanisms against microbial pathogens. The recent accumulated information allow us to understand the nature of plant immune responses followed by recognition of microbial factors/determinants through cutting-edge genomics and multi-omics techniques. However, the practical approaches to sustain plant health using enhancement of plant immunity is yet to be fully appreciated. Here, we overviewed the general concept and representative examples on the plant immunity. The fungal, bacterial, and viral determinants that was previously reported as the triggers of plant immune responses are introduced and described as the potential protocol of biological control. Specifically, the role of chitin, glucan, lipopolysaccharides/extracellular polysaccharides, microbe/pathogen-associated molecular pattern, antibiotics, mimic-phytohormones, N-acyl homoserine lactone, harpin, vitamins, and volatile organic compounds are considered. We hope that this review stimulates scientific community and farmers to broaden their knowledge on the microbial determinant-based biological control and to apply the technology on the integrated pest management program.

Dehydroepiandrosterone supplement increases malate dehydrogenase activity and decreases NADPH-dependent antioxidant enzyme activity in rat hepatocellular carcinogenesis

  • Kim, Jee-Won;Kim, Sook-Hee;Choi, Hay-Mie
    • Nutrition Research and Practice
    • /
    • v.2 no.2
    • /
    • pp.80-84
    • /
    • 2008
  • Beneficial effects of dehydroepiandrosterone (DHEA) supplement on age-associated chronic diseases such as cancer, cardiovascular disease, insulin resistance and diabetes, have been reported. However, its mechanism of action in hepatocellular carcinoma in vivo has not been investigated in detail. We have previously shown that during hepatocellular carcinogenesis, DHEA treatment decreases formation of preneoplastic glutathione S-transferase placental form-positive foci in the liver and has antioxidant effects. Here we aimed to determine the mechanism of actions of DHEA, in comparison to vitamin E, in a chemically-induced hepatocellular carcinoma model in rats. Sprague-Dawley rats were administered with control diet without a carcinogen, diets with 1.5% vitamin E, 0.5% DHEA and both of the compounds with a carcinogen for 6 weeks. The doses were previously reported to have anti-cancer effects in animals without known toxicities. With DHEA treatment, cytosolic malate dehydrogenase activities were significantly increased by ${\sim}5$ fold and glucose 6-phosphate dehydrogenase activities were decreased by ${\sim}25%$ compared to carcinogen treated group. Activities of Se-glutathione peroxidase in the cytotol was decreased siguificantly with DHEA treatment, confirming its antioxidative effect. However, liver microsomal cytochrome P-450 content and NADPH-dependent cytochrome P-450 reductase activities were not altered with DHEA treatment. Vitamin E treatment decreased cytosolic Se-glutathione peroxidase activities in accordance with our previous reports. However, vitamin E did not alter glucose 6-phosphate dehydrogenase or malate dehydrogenase activities. Our results suggest that DHEA may have decreased tumor nodule formation and reduced lipid peroxidation as previously reported, possibly by increasing the production of NADPH, a reducing equivalent for NADPH-dependent antioxidant enzymes. DHEA treatment tended to reduce glucose 6-phosphate dehydrogenase activities, which may have resulted in limited supply for de novo synthesis of DNA via inhibiting the hexose monophophaste pathway. Although both DHEA and vitamin E effectively reduced preneoplastic foci in this model, they seemed to fimction in different mechanisms. In conclusion, DHEA may be used to reduce hepatocellular carcinoma growth by targeting NADPH synthesis, cell proliferation and anti-oxidant enzyme activities during tumor growth.

The experimental evidences of steamed and freeze-dried mature silkworm powder as the calorie restriction mimetics

  • Kim, Kee-Young;Osabutey, Angelina F.;Nguyen, Phuong;Kim, Soo Bae;Jo, You-Young;Kweon, HaeYong;Lee, Hyun-Tai;Ji, Sang-Deok;Koh, Young Ho
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.39 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • Steamed and freeze-dried mature silkworm powder (SMSP) is a natural food containing a large amount of various functional materials and has various health promoting effects. SMSP is known to increase the life expectancy and healthspan, simultaneously. The accomplishment of extension of healthspan should be possible to achieve by activating various signaling pathways delaying aging in various tissues, not by regulating only a few signaling pathways. Consistent with this notion, SMSP increased the resistant to Parkinson disease by enhancing olfaction and mitochondrial activity in neurons of animal models. In addition, SMSP could enhance the gastrointestinal functions. The animals consumed SMSP showed enhanced alcohol metabolisms, reduced cholesterols in bloods, increased resistance to carcinogens causing liver cancers, and protective effects in alcohol induced stomach ulcers. Furthermore, SMSP was also effective in appearance. The SMSP consumed animals showed reduced skin pigmentations and more hair growth compared with control animals. Taken together, the functional enhancement effects of SMSPs in various tissues and organs, which have been discovered to date, are combined to extend healthspan. Therefore, SMSP can be regarded as calorie restriction mimetics. Further studies in the health promoting effects of SMSP will contribute to identifying new applicable diseases, resulted in increased sales of SMSP and incomes of sericulture farmers.

Inhibition of mitoNEET induces Pink1-Parkin-mediated mitophagy

  • Lee, Seunghee;Lee, Sangguk;Lee, Seon-Jin;Chung, Su Wol
    • BMB Reports
    • /
    • v.55 no.7
    • /
    • pp.354-359
    • /
    • 2022
  • MitoNEET, a mitochondrial outer membrane protein containing the Asn-Glu-Glu-Thr (NEET) sequence, controls the formation of intermitochondrial junctions and confers autophagy resistance. Moreover, mitoNEET as a mitochondrial substrate undergoes ubiquitination by activated Parkin during the initiation of mitophagy. Therefore, mitoNEET is linked to the regulation of autophagy and mitophagy. Mitophagy is the selective removal of the damaged or unnecessary mitochondria, which is crucial to sustaining mitochondrial quality control. In numerous human diseases, the accumulation of damaged mitochondria by impaired mitophagy has been observed. However, the therapeutic strategy targeting of mitoNEET as a mitophagy-enhancing mediator requires further research. Herein, we confirmed that mitophagy is indeed activated by mitoNEET inhibition. CCCP (carbonyl cyanide m-chlorophenyl hydrazone), which leads to mitochondrial depolarization, induces mitochondrial dysfunction and superoxide production. This, in turn, contributes to the induction of mitophagy; mitoNEET protein levels were initially increased before an increase in LC3-II protein following CCCP treatment. Pharmacological inhibition of mitoNEET using mitoNEET Ligand-1 (NL-1) promoted accumulation of Pink1 and Parkin, which are mitophagy-associated proteins, and activation of mitochondria-lysosome crosstalk, in comparison to CCCP alone. Inhibition of mitoNEET using NL-1, or mitoNEET shRNA transfected into RAW264.7 cells, abrogated CCCP-induced ROS and mitochondrial cell death; additionally, it activated the expression of PGC-1α and SOD2, regulators of oxidative metabolism. In particular, the increase in PGC-1α, which is a major regulator of mitochondrial biogenesis, promotes mitochondrial quality control. These results indicated that mitoNEET is a potential therapeutic target in numerous human diseases to enhance mitophagy and protect cells by maintaining a network of healthy mitochondria.