• 제목/요약/키워드: Induced disease resistance

검색결과 239건 처리시간 0.026초

Metformin alleviates chronic obstructive pulmonary disease and cigarette smoke extract-induced glucocorticoid resistance by activating the nuclear factor E2-related factor 2/heme oxygenase-1 signaling pathway

  • Tao, Fulin;Zhou, Yuanyuan;Wang, Mengwen;Wang, Chongyang;Zhu, Wentao;Han, Zhili;Sun, Nianxia;Wang, Dianlei
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권2호
    • /
    • pp.95-111
    • /
    • 2022
  • Chronic obstructive pulmonary disease (COPD) is an important healthcare problem worldwide. Often, glucocorticoid (GC) resistance develops during COPD treatment. As a classic hypoglycemic drug, metformin (MET) can be used as a treatment strategy for COPD due to its anti-inflammatory and antioxidant effects, but its specific mechanism of action is not known. We aimed to clarify the role of MET on COPD and cigarette smoke extract (CSE)-induced GC resistance. Through establishment of a COPD model in rats, we found that MET could improve lung function, reduce pathological injury, as well as reduce the level of inflammation and oxidative stress in COPD, and upregulate expression of nuclear factor E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), multidrug resistance protein 1 (MRP1), and histone deacetylase 2 (HDAC2). By establishing a model of GC resistance in human bronchial epithelial cells stimulated by CSE, we found that MET reduced secretion of interleukin-8, and could upregulate expression of Nrf2, HO-1, MRP1, and HDAC2. MET could also increase the inhibition of MRP1 efflux by MK571 significantly, and increase expression of HDAC2 mRNA and protein. In conclusion, MET may upregulate MRP1 expression by activating the Nrf2/HO-1 signaling pathway, and then regulate expression of HDAC2 protein to reduce GC resistance.

마황, 인삼, 택사 복합추출물의 endocannabinoid system 억제를 통한 비알콜성 지방간 유도 인슐린저항성 개선 효과 (The Efficacy of Ephedra sinica, Panax ginseng, and Alisma orientale Extract on Insulin resistance induced by Non-alcoholic fatty liver disease (NAFLD))

  • 김기봉;안상현
    • 대한한방소아과학회지
    • /
    • 제34권4호
    • /
    • pp.11-21
    • /
    • 2020
  • Objectives This study aimed to investigate the efficacy of Ephedra sinica (E. sinica), Panax ginseng (P. ginseng), and Alisma orientale (A. orientale) Extract (MIT) on insulin resistance induced by Non-alcoholic fatty liver disease (NAFLD). Methods C57BL /6 male mice (8-week-old, 20 g) were divided into four groups: control group (Ctrl), high-fat diet group (HFDF), high fat diet with metformin administration group (METT), and high fat diet with MIT administration group (MITT). Each 10 mice were allocated to each group (a total of 40 mice). All mice were allowed to eat fat-rich diet freely throughout the experiment. To examine the effect of MIT, we observed Cannabinoid receptor type 1 (CB1), Cannabinoid receptor type 2 (CB2), G protein-coupled receptor 55 (GPR55), and Transforming growth factor-β (TGF-β). Results In the MITT group, positive reactions of the CB1, CB2, and GPR55 were significantly was significantly suppressed compared to the HFDF group. The positive reactions of the CD36 and TGF-β in the liver tissue were significantly suppressed in MITT. Conclusions MIT has the effect of improving NAFLD induced insulin resistance through the regulation of the lipid metabolism.

리보플라빈을 함유한 바이오닥터TM 처리에 따른 벼 도열병과 흰잎마름병 억제효과 (Riboflavin-based BioDoctorTM Induced Disease Resistance against Rice Blast and Bacterial Leaf Blight Diseases)

  • 강범용;한송희;김철홍;김영철
    • 식물병연구
    • /
    • 제22권3호
    • /
    • pp.202-207
    • /
    • 2016
  • 쌀은 세계에서 가장 중요한 작물 중의 하나이지만 충분한 비타민을 제공하지 않고, 벼 도열병과 흰잎마름병은 전 세계적으로 가장 큰 피해를 주고 있는 병해이다. 리보플라빈, 비타민 B2는 인간의 건강에 필수적인 영양소이며, 식물의 병원균에 대한 식물의 방어 활성화로 알려져 있다. 본 연구에서는 BioDoctor (Hyunnong Co., Ltd., Gokseong, Korea)라는 리보플라빈 기반 제품을 벼에 경엽살포했을 때, 주요 병해에 대한 저항성 유도 및 벼 체내에 비타민 함량이 증가되는지에 대한 가능성을 조사하였다. 온실검정에서 BioDoctor 제품 500배와 1,000배로 희석하여 경엽처리 결과 벼 도열병과 흰잎마름병에 대해 현저한 병 저항성을 유도하였다. 또한, BioDoctor를 처리한 알곡과 잎에서 통계적으로 유의한 수준으로 리보플라빈 함량이 검출되었다. 본 연구는 비타민인 리보플라빈이 함유된 BioDoctor가 벼 도열병과 흰잎마름병에 대해 병 저항성을 유도할 뿐만 아니라 쌀 곡류 내에 비타민 함량을 증가시키는 큰 잠재력을 가지고 있는 것으로 나타났다.

Cyclic Dipeptides from Bacillus vallismortis BS07 Require Key Components of Plant Immunity to Induce Disease Resistance in Arabidopsis against Pseudomonas Infection

  • Noh, Seong Woo;Seo, Rira;Park, Jung-Kwon;Manir, Md. Maniruzzaman;Park, Kyungseok;Sang, Mee Kyung;Moon, Surk-Sik;Jung, Ho Won
    • The Plant Pathology Journal
    • /
    • 제33권4호
    • /
    • pp.402-409
    • /
    • 2017
  • Cyclic dipeptides (CDPs) are one of the simplest compounds produced by living organisms. Plant-growth promoting rhizobacteria (PGPRs) also produce CDPs that can induce disease resistance. Bacillus vallismortis strain BS07 producing various CDPs has been evaluated as a potential biocontrol agent against multiple plant pathogens in chili pepper. However, plant signal pathway triggered by CDPs has not been fully elucidated yet. Here we introduce four CDPs, cyclo(Gly-L-Pro) previously identified from Aspergillus sp., and cyclo(L-Ala-L-Ile), cyclo(L-Ala-L-Leu), and cyclo(L-Leu-L-Pro) identified from B. vallismortis BS07, which induce disease resistance in Arabidopsis against Pseudomonas syringae infection. The CDPs do not directly inhibit fungal and oomycete growth in vitro. These CDPs require PHYTOALEXIN DEFICIENT4, SALICYLIC ACID INDUCTION DEFICIENT2, and NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 important for salicylic acid-dependent defense to induce resistance. On the other hand, regulators involved in jasmonate-dependent event, such as ETHYLENE RECEPTOR1, JASMONATE RESPONSE1, and JASMONATE INSENSITIVE1, are necessary to the CDP-induced resistance. Furthermore, treatment of these CDPs primes Arabidopsis plants to rapidly express PATHOGENESIS-RELATED PROTEIN4 at early infection phase. Taken together, we propose that these CDPs from PGPR strains accelerate activation of jasmonate-related signaling pathway during infection.

Effect of Iron Availability on Induction of Systemic Resistance to Fusarium Wilt of Chickpea by Pseudomonas spp.

  • Saikia, Ratul;Srivastava, Alok K.;Singh, Kiran;Arora, Dilip K.;Lee, Min-Woong
    • Mycobiology
    • /
    • 제33권1호
    • /
    • pp.35-40
    • /
    • 2005
  • Selected isolates of Pseudomonas fluorescens (Pf4-92 and PfRsC5) and P. aeruginosa (PaRsG18 and PaRsG27) were examined for growth promotion and induced systemic resistance against Fusarium wilt of chickpea. Significant increase in plant height was observed in Pseudomonas treated plants. However, plant growth was inhibited when isolates of Pseudomonas were used in combination with Fusarium oxysporum f. sp. ciceri (FocRs1). It was also observed that the Pseudomonas spp. was colonized in root of chickpea and significantly suppressed the disease in greenhouse condition. Rock wool bioassay technique was used to study the effect of iron availability on the induction of systemic resistance to Fusarium wilt of chickpea mediated by the Pseudomonas spp. All the isolates of Pseudomonas spp. showed greater disease control in the induced systemic resistance (ISR) bioassay when iron availability in the nutrient solution was low. High performance liquid chromatography (HPLC) analysis indicated that an the bacterial isolates produced more salicylic acid (SA) at low iron ($10\;{\mu}M$ EDDHA) than high iron availability ($10\;{\mu}Fe^{3+}$ EDDHA). Except PaRsG27, all the three isolates produced more pseudobactin at low iron than high iron availability.

Determinants of Plant Growth-promoting Ochrobactrum lupini KUDC1013 Involved in Induction of Systemic Resistance against Pectobacterium carotovorum subsp. carotovorum in Tobacco Leaves

  • Sumayo, Marilyn;Hahm, Mi-Seon;Ghim, Sa-Youl
    • The Plant Pathology Journal
    • /
    • 제29권2호
    • /
    • pp.174-181
    • /
    • 2013
  • The plant growth-promoting rhizobacterium Ochrobactrum lupini KUDC1013 elicited induced systemic resistance (ISR) in tobacco against soft rot disease caused by Pectobacterium carotovorum subsp. carotovorum. We investigated of its factors involved in ISR elicitation. To characterize the ISR determinants, KUDC1013 cell suspension, heat-treated cells, supernatant from a culture medium, crude bacterial lipopolysaccharide (LPS) and flagella were tested for their ISR activities. Both LPS and flagella from KUDC1013 were effective in ISR elicitation. Crude cell free supernatant elicited ISR and factors with the highest ISR activity were retained in the n-butanol fraction. Analysis of the ISR-active fraction revealed the metabolites, phenylacetic acid (PAA), 1-hexadecene and linoleic acid (LA), as elicitors of ISR. Treatment of tobacco with these compounds significantly decreased the soft rot disease symptoms. This is the first report on the ISR determinants by plant growth-promoting rhizobacteria (PGPR) KUDC1013 and identifying PAA, 1-hexadecene and LA as ISR-related compounds. This study shows that KUDC1013 has a great potential as biological control agent because of its multiple factors involved in induction of systemic resistance against phytopathogens.

Induction of systemic resistance in Panax ginseng against Phytophthora cactorum by native Bacillus amyloliquefaciens HK34

  • Lee, Byung Dae;Dutta, Swarnalee;Ryu, Hojin;Yoo, Sung-Je;Suh, Dong-Sang;Park, Kyungseok
    • Journal of Ginseng Research
    • /
    • 제39권3호
    • /
    • pp.213-220
    • /
    • 2015
  • Background: Korean ginseng (Panax ginseng Meyer) is a perennial herb prone to various root diseases, with Phytophthora cactorum being considered one of the most dreaded pathogens. P. cactorum causes foliar blight and root rot. Although chemical pesticides are available for disease control, attention has been shifted to viable, eco-friendly, and cost-effective biological means such as plant growth-promoting rhizobacteria (PGPR) for control of diseases. Methods: Native Bacillus amyloliquefaciens strain HK34 was isolated from wild ginseng and assessed as a biological control agent for ginseng. Leaves from plants treated with HK34 were analyzed for induced systemic resistance (ISR) against P. cactorum in square plate assay. Treated plants were verified for differential expression of defense-related marker genes using quantitative reverse transcription polymerase chain reaction. Results: A total of 78 native rhizosphere bacilli from wild P. ginseng were isolated. One of the root-associated bacteria identified as B. amyloliquefaciens strain HK34 effectively induced resistance against P. cactorum when applied as soil drench once (99.1% disease control) and as a priming treatment two times in the early stages (83.9% disease control). A similar result was observed in the leaf samples of plants under field conditions, where the percentage of disease control was 85.6%. Significant upregulation of the genes PgPR10, PgPR5, and PgCAT in the leaves of plants treated with HK34 was observed against P. cactorum compared with untreated controls and only pathogen-treated plants. Conclusion: The results of this study indicate HK34 as a potential biocontrol agent eliciting ISR in ginseng against P. cactorum.

Resistance Induction by Salicylic Acid Formulation in Cassava Plant against Fusarium solani

  • Saengchan, Chanon;Phansak, Piyaporn;Thumanu, Kanjana;Siriwong, Supatcharee;Le Thanh, Toan;Sangpueak, Rungthip;Thepbandit, Wannaporn;Papathoti, Narendra Kumar;Buensanteai, Natthiya
    • The Plant Pathology Journal
    • /
    • 제38권3호
    • /
    • pp.212-219
    • /
    • 2022
  • Fusarium root rot caused by the soil-borne fungus Fusarium solani is one of the most important fungal diseases of cassava in Thailand, resulting in high yield losses of more than 80%. This study aimed to investigate if the exogenous application of salicylic acid formulations (Zacha) can induce resistance in cassava against Fusarium root rot and observe the biochemical changes in induced cassava leaf tissues through synchrotron radiation based on Fourier-transform infrared (SR-FTIR) microspectroscopy. We demonstrated that the application of Zacha11 prototype formulations could induce resistance against Fusarium root rot in cassava. The in vitro experimental results showed that Zacha11 prototype formulations inhibited the growth of F. solani at approximately 34.83%. Furthermore, a significant reduction in the disease severity of Fusarium root rot disease at 60 days after challenge inoculation was observed in cassava plants treated with Zacha11 at a concentration of 500 ppm (9.0%). Population densities of F. solani were determined at 7 days after inoculation. Treatment of the Zacha11 at a concentration of 500 ppm resulted in reduced populations compared with the distilled water control and differences among treatment means at each assay date. Moreover, the SR-FTIR spectral changes of Zacha11-treated epidermal tissues of leaves had higher integral areas of lipids, lignins, and pectins (1,770-1,700/cm), amide I (1,700-1,600/cm), amide II (1,600-1,500/cm), hemicellulose, lignin (1,300-1,200/cm), and cellulose (1,155/cm). Therefore, alteration in defensive carbohydrates, lipids, and proteins contributed to generate barriers against Fusarium invasion in cassava roots, leading to lower the root rot disease severity.

Bacillus vallismortis BS07M 제형의 고추 생장촉진과 병저항성 유도 (Plant Growth Promotion and Induced Resistance by the Formulated Bacillus vallismortis BS07M in Pepper)

  • 이용호;송재경;원항연;박경석;상미경
    • 식물병연구
    • /
    • 제22권4호
    • /
    • pp.284-288
    • /
    • 2016
  • 식물 생장촉진근권세균 B. vallismortis BS07M을 점토로 제형화한 제제(CP)는 고추의 생육촉진 및 병저항성 유도 효과를 보였다. CP를 육묘 상토에 혼합하는 것은 기존의 세균 현탁액을 유묘 또는 포장에서 재배 중에 관주 살포하는 방법에 비해 비교적 사용하기 쉽고, 그 효과가 포장에서도 지속됨으로써 고추의 열매 개당 무게를 증가시켰으며, 수확 후 저장 중에 자연적으로 발생하는 무름 증상을 감소시킴으로써 보관기간을 늘리는 효과가 있을 것이다.

Paromomycin Derived from Streptomyces sp. AG-P 1441 Induces Resistance against Two Major Pathogens of Chili Pepper

  • Balaraju, Kotnala;Kim, Chang-Jin;Park, Dong-Jin;Nam, Ki-Woong;Zhang, Kecheng;Sang, Mee Kyung;Park, Kyungseok
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권9호
    • /
    • pp.1542-1550
    • /
    • 2016
  • This is the first report that paromomycin, an antibiotic derived from Streptomyces sp. AG-P 1441 (AG-P 1441), controlled Phytophthora blight and soft rot diseases caused by Phytophthora capsici and Pectobacterium carotovorum, respectively, in chili pepper (Capsicum annum L.). Chili pepper plants treated with paromomycin by foliar spray or soil drenching 7 days prior to inoculation with P. capsici zoospores showed significant (p < 0.05) reduction in disease severity (%) when compared with untreated control plants. The disease severity of Phytophthora blight was recorded as 8% and 50% for foliar spray and soil drench, respectively, at 1.0 ppm of paromomycin, compared with untreated control, where disease severity was 83% and 100% by foliar spray and soil drench, respectively. A greater reduction of soft rot lesion areas per leaf disk was observed in treated plants using paromomycin (1.0 μg/ml) by infiltration or soil drench in comparison with untreated control plants. Paromomycin treatment did not negatively affect the growth of chili pepper. Furthermore, the treatment slightly promoted growth; this growth was supported by increased chlorophyll content in paromomycin-treated chili pepper plants. Additionally, paromomycin likely induced resistance as confirmed by the expression of pathogenesis-related (PR) genes: PR-1, β-1,3-glucanase, chitinase, PR-4, peroxidase, and PR-10, which enhanced plant defense against P. capsici in chili pepper. This finding indicates that AG-P 1441 plays a role in pathogen resistance upon the activation of defense genes, by secretion of the plant resistance elicitor, paromomycin.