• Title/Summary/Keyword: Induced angle

Search Result 784, Processing Time 0.023 seconds

Soft X-ray Nano-spectroscopy for Electronic Structures of Transition Metal Oxide Nano-structures

  • Oshima, Masaharu
    • Applied Science and Convergence Technology
    • /
    • v.23 no.6
    • /
    • pp.317-327
    • /
    • 2014
  • In order to develop nano-devices with much lower power consumption for beyond-CMOS applications, the fundamental understanding and precise control of the electronic properties of ultrathin transition metal oxide (TMO) films are strongly required. The metal-insulator transition (MIT) is not only an important issue in solid state physics, but also a useful phenomenon for device applications like switching or memory devices. For potential use in such application, the electronic structures of MIT, observed for TMO nano-structures, have been investigated using a synchrotron radiation angle-resolved photoelectron spectroscopy system combined with a laser molecular beam epitaxy chamber and a scanning photoelectron microscopy system with 70 nm spatial resolution. In this review article, electronic structures revealed by soft X-ray nano-spectroscopy are presented for i) polarity-dependent MIT and thickness-dependent MIT of TMO ultrathin films of $LaAlO_3/SrTiO_3$ and $SrVO_3/SrTiO_3$, respectively, and ii) electric field-induced MIT of TMO nano-structures showing resistance switching behaviors due to interfacial redox reactions and/or filamentary path formation. These electronic structures have been successfully correlated with the electrical properties of nano-structured films and nano-devices.

Experimental Study on the Spray Characteristics of Aerated Impinging Jets (기체주입 충돌제트의 분무특성에 관한 실험적 연구)

  • Lee, Keunseok;Yoon, Youngbin;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.24 no.4
    • /
    • pp.185-193
    • /
    • 2019
  • The effervescent atomizer is one of twin-fluid atomizers that aeration gas enters into bulk liquid and two-phase flow is formed in the mixing section. The effervescent atomizer requires low injection pressure and small amount of aeration gas, as compared to other twin-fluid atomizers. In this study, cold flow test was conducted to investigate the spray characteristics of aerated impinging jets. The present effervescent impinging atomizers were composed of the aerator device and like-on-like doublet impinging atomizer which had different impinging angles. To analyze the spray characteristics such as breakup length and droplet size distribution, the image processing technique was adopted by using instantaneous images at each flow condition. Non-dimensional parameters, induced by the homogeneous flow model, were used to predict the breakup length. The breakup length was decreased with the mixture Reynolds number and impinging angle increasing. The result of droplets showed that the size distribution was axisymmetric about the center of the injector and their diameter tended to decrease with increasing GLR.

Performance Characteristics Due to the Inflow Distortion near Hub in an Axial Flow Fan (축류 송풍기 허브측 불균일 유입유동 현상 및 성능 특성)

  • Jang, Choon-Man;Choi, Seung-Man;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.663-669
    • /
    • 2005
  • Performance characteristics of an axial flow fan having distorted inlet flow have been investigated using numerical analysis as well as experiment. Two kinds of hub-cap, round shape and right-angled front shape, are tested to investigate the effect of inlet flow distortion on the fan performance. In case of right-angled front shape, axisymmetric distorted inflow is induced by flow separation at the sharp edge of hub-cap, and the characteristics of the inflow depends on the distance between hub-cap and blade leading edge. Flow analysis of the blade passage is peformed by solving the three-dimensional Reynolds-averaged Navier-Stokes equations. numerical solutions are validated in comparison with experimental data measured by a five-hole probe downstream of the fan rotor. It is found from the numerical results that non-uniform axial inlet velocity profile near the hub results in the change of inlet flowangle. The changed inlet flow angle near the hub invokesa flow separation on the blade surfaces, thus deteriorating the fan efficiency. The effect of the distance between hub-cap and blade leading edge on the efficiency is also discussed.

  • PDF

Flatfish Vitellogenin Detection Using Optical Waveguide Lightmode Spectroscopy-based Immunosensor

  • Kim, Nam-Soo;Ryu, Hyung-Seok;Kim, Woo-Yeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.9
    • /
    • pp.1445-1451
    • /
    • 2007
  • A sensitive optical waveguide lightmode spectroscopy-based immunosensor was developed to detect vitellogenin in seawater flatfish (Paralichthys olivaceus). For this purpose, anion-exchange column chromatography with DE-52 resin was used to purify flatfish vitellogenin from flatfish serum containing vitellogenin that had been induced using an intraperitoneal $17{\beta}$-estradiol injection. The anti-flatfish vitellogenin antibody used as the biological component of the above immunosensor was prepared using the purified flatfish vitellogenin. The change in the incoupling angle according to the complexation between the flatfish vitellogenin and its antibody, immobilized over an optical grating coupler sensor chip, was measured to calculate the sensor response. The immunosensor was quite specific to flatfish vitellogenin binding, based on no sensor response in the case of bovine serum albumin immobilization. When plotted using double-logarithmic scales, the sensor responses increased linearly in flatfish vitellogenin concentrations of 0.00675-67.5 nM, with a detection limit of 0.0675 nM. The reusability during seven repetitive measurements was reasonably fair for the preliminary screening of flatfish vitellogenin.

Evaluation of Hand- Arm Vibration of Steel Processing Factory Workers (금속가공 작업자의 국소진동 평가)

  • Youn, Jeong Taek;Park, Sang Kyu;Kim, So Yeon;Lee, Tae Yeoung;Jang, Jae Yeon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.9 no.2
    • /
    • pp.52-65
    • /
    • 1999
  • This study was performed to evaluate the hand-arm vibration of the steel processing factory workers. Measurement, evaluation and as sessment were based on the International Standard(ISO 5349). The frequency weighted accelerations of the various hand-held tools and total exposure time were measured to assess the periods for the white finger symptom to occur. As a result, it was found that the air angle grinder and the air baby grinder are more harmful than other hand-held tools. It was also found that using various vibratory tools together is more harmful than using a single tool.

  • PDF

Mixing in a Microchannel by using Induced-charge Electro-osmosis (마이크로 채널 내 유도-전하 전기삼투에 의한 혼합)

  • Jeon, Young-Hun;Heo, Young-Gun;Jung, Won-Hyuk;Alapati, Suresh;Suh, Yong-Kweon
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.4
    • /
    • pp.13-18
    • /
    • 2010
  • This paper presents an experimental study on the performance of a micro-mixer using AC electro-osmotic flow. The microchannel is made of PDMS for the side and top walls and glass patterned with ITO for the bottom wall. We first investigated the effect of the applied potential as well as the frequency on the slip velocity. We have found that the slip velocity is roughly proportional to the applied voltage in line with the Helmholtz-Smoluchowski equation and there is an optimum frequency at which the slip velocity becomes maximized. To find the optimum parameters for mixing device we tested our device for various design parameters. It turned out that the best mixing effect is obtained approximately when the electrode angle is $30^{\circ}$, electrode width $200\;{\mu}m$, and the frequency of power supply 700 Hz.

Development of New Back-Up Roll for Strip Shape Control (형상제어를 위한 새로운 보강롤의 개발)

  • Lee, Won-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.327-333
    • /
    • 2003
  • Most of shape defects in steel strip are originated from the structure of rolling mill itself. For instance, strip crown occurs when the work roll is deformed by the bending moment induced on roll chocks. To get rids of the shape defects, it is necessary to increase the stiffness of rolling mill. The structure change of back-up roll is one of alternative ways to increase the mill stiffness without facility revamping from 4 high mill to 6 high mill. In this research work, the new back-up roll was developed and can be used in any type of 4 high mill to reduce the strip shape defects. The developed back-up roll consists of sleeve, arbor and phase angle adjusting system for arbor. The circumference of arbor is specially machined to adapt the strip width change during rolling. The experimental cold rolling test was done to prove the effectiveness of newly developed back-up roll. The experimental rolling results show that the new back-up roll has more powerful performance in reducing the shape defects than conventional back-up roll. It was also found that the new back-up roll has higher stability for shape control. In addition to, the only sleeve surface needs to be reground and changed in most cases, so that the maintenance cost can be greatly reduced.

Numerical Analysis on the Aerodynamic Characteristics of Thin Airfoil with Flapping and Pitching Motion (플래핑 운동 및 키놀이 운동을 하는 얇은 에어포일의 공력특성에 대한 수치 해석)

  • Kim, Woo-Jin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.1
    • /
    • pp.45-50
    • /
    • 2013
  • In this study, lumped-vortex element method and thin airfoil theory were used to analyze aerodynamic characteristics of airfoils with relative motion that had camber lines of NACA $44{\times}{\times}$ airfoil in 2-dimensional unsteady incompressible potential flow. Velocity disturbance due to airfoil was calculated by lumped-vortex element model and force distribution on airfoil by unsteady Bernoulli's equation. Variables in relative motion were considered the period p, the amplitude of flapping $A_f$ and pitching $A_p$, and the phase difference between flapping and pitching ${\phi}_p$ and the angle of attack ${\alpha}$. Due to movement of an airfoil, dag was induced in 2-dimensional unsteady incompressible potential flow. The numerical results show that the aerodynamic characteristics of the airfoil with flapping and pitching at the same time are illustrated. Especially the mean lift coefficient became smaller, but drag coefficient became larger.

Numerical Simulation for the Rudder in order to Control the Cavitation Phenomena

  • Boo, Kyung-Tae;Song, In-Hang;Soochul Shin
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.1
    • /
    • pp.42-50
    • /
    • 2004
  • In these ten years, the cavitation and erosion phenomena in the rudder have been increased for high-speed container ships. The cavitation in the rudder blades which is injurious to rudder efficiency is mainly caused by the main flow with a large angle of attack induced by propellers, and the erosion which occurs as a result of repeated blows by shock wave that cavitation collapse may produce was observed in the gap legion of the rudder. However, gap cavitation is not prone to occur in model experiments because of low Reynolds number. So, the viscous effect should be considered for solving the flow of the narrow gap. In order to predict the cavitation phenomena and to improve the performance of the rudder, the analysis of the viscous flow in the rudder gap is positively necessary. In this study, numerical calculation for the solution of the RANS equation is applied to the two-dimensional flow around the rudder gap including horn part and pintle part. The velocity and pressure field are numerically acquired according to Reynolds number and the case that the round bar is installed in the gap is analyzed. For reduced the acceleration that pressure drop can be highly restrained numerically and in model experiment, the cavitation bubbles can be reduced.

A Study on the Design of a New Web Guiding Mechanism Using a Tilting Roller (롤의 웹 표면 수직방향 기울임을 이용한 새로운 웹 가이더 설계에 관한 연구)

  • Shin, Han-Shic;Jee, Hyuk-Jong;Shin, Kee-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.84-89
    • /
    • 2001
  • The alignment of the rollers carrying the web is found to be one of important factors to the lateral behavior of the moving web and to the quality of the final web products. But, the perfect alignment of the rollers is not always possible and the web itself can be cambered. Thus the control of lateral behavior of the moving web is critical in the most of web handling systems. The web guiding system that adjusts the angle of the alignment between two adjacent rollers is commonly used in industry. But, in this paper a new web guiding system is proposed by using the lateral dynamics of the moving web induced by a tilted roller in normal direction of a web. The computer simulation study was carried out to verify the steering performance of the suggested guiding system. Computer simulation study shows that the performance of the new guiding mechanism is better than that of an existing guiding mechanism.

  • PDF