Browse > Article

Flatfish Vitellogenin Detection Using Optical Waveguide Lightmode Spectroscopy-based Immunosensor  

Kim, Nam-Soo (Food Nano-Biotechnology Research Center, Korea Food Research Institute)
Ryu, Hyung-Seok (Department of Biotechnology, Chung-Ang University)
Kim, Woo-Yeon (Department of Biotechnology, Chung-Ang University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.9, 2007 , pp. 1445-1451 More about this Journal
Abstract
A sensitive optical waveguide lightmode spectroscopy-based immunosensor was developed to detect vitellogenin in seawater flatfish (Paralichthys olivaceus). For this purpose, anion-exchange column chromatography with DE-52 resin was used to purify flatfish vitellogenin from flatfish serum containing vitellogenin that had been induced using an intraperitoneal $17{\beta}$-estradiol injection. The anti-flatfish vitellogenin antibody used as the biological component of the above immunosensor was prepared using the purified flatfish vitellogenin. The change in the incoupling angle according to the complexation between the flatfish vitellogenin and its antibody, immobilized over an optical grating coupler sensor chip, was measured to calculate the sensor response. The immunosensor was quite specific to flatfish vitellogenin binding, based on no sensor response in the case of bovine serum albumin immobilization. When plotted using double-logarithmic scales, the sensor responses increased linearly in flatfish vitellogenin concentrations of 0.00675-67.5 nM, with a detection limit of 0.0675 nM. The reusability during seven repetitive measurements was reasonably fair for the preliminary screening of flatfish vitellogenin.
Keywords
Optical waveguide lightmode spectroscopy-based immunosensor; sensitive detection; flatfish vitellogenin;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Voros, J., J. J. Ramsden, G. Csúcs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer. 2002. Optical grating coupler biosensors. Biomaterials 23: 3699-3710   DOI   ScienceOn
2 Kim, N., I.-S. Park, and W.-Y. Kim. 2006. Detection of carp vitellogenin with piezoelectric immunosensor. J. Korean Soc. Appl. Biol. Chem. 49: 254-258   과학기술학회마을
3 Leonard, P., S. Hearty, J. Quinn, and R. O'Kennedy. 2004. A generic approach for the detection of whole Listeria monocytogenes cells in contaminated samples using surface plasmon resonance. Biosens. Bioelectron. 19: 1331-1335   DOI   ScienceOn
4 Magalhães, I., M.-L. Ledrich, J.-C. Pihan, and J. Falla. 2004. One-step, non-denaturing purification method of carp (Cyprinus carpio) vitellogenin. J. Chromatogr. B 799: 87-93   DOI   ScienceOn
5 Mosconi, G., O. Carnevali, R. Carletta, M. Nabissi, and A. M. Polzonetti-Magni. 1998. Gilthead seabream (Sparus aurata) vitellogenin: Purification, partial characterization, and validation of an enzyme-linked immunosorbent assay (ELISA). Gen. Comp. Endocrinol. 110: 252-261   DOI   ScienceOn
6 Park, I.-S., D.-K. Kim, and N. Kim. 2004. Characterization and food application of a potentiometric biosensor measuring $\beta$-lactam antibiotics. J. Microbiol. Biotechnol. 14: 698-706
7 Tyler, C. R., R. Van Aerle, M. V. Nilsen, R. Blackwell, S. Maddix, B. M. Nilsen, K. Berg, T. H. Hutchinson, and A. Goksoyr. 2002. Monoclonal antibody enzyme-linked immunosorbent assay to quantify vitellogenin for studies on environmental estrogens in the rainbow trout (Oncorhynchus mykiss). Environ. Toxicol. Chem. 21: 47-54   DOI   ScienceOn
8 Prakash Vincent, S. G., R. Keller, and T. Subramoniam. 2001. Development of vitellogenin-ELISA, an in vivo bioassay, and identification of two vitellogenesis-inhibiting hormones of the tiger shrimp Penaeus monodon. Mar. Biotechnol. 3: 561-571   DOI
9 MicroVacuum Ltd. 2002. Optical Waveguide Lightmode Spectroscopy System OWLS 110 & Biosense 2.2 Software User's Manual, pp. 25-26
10 Kim, N., I.-S. Park, and D.-K. Kim. 2006. Optimization of quartz crystal microbalance-precipitation sensor measuring acetylcholinesterase activity. J. Microbiol. Biotechnol. 16: 1523-1528   과학기술학회마을
11 Kim, N., I.-S. Park, and D.-K. Kim. 2007. Salmonella detection with a direct-binding optical grating coupler immunosensor. Sens. Actuators B Chem. 121: 606-615   DOI   ScienceOn
12 Ramsden, J. J. and J. Dreier. 1996. Kinetics of the interaction between DNA and the type IC restriction enzyme EcoR124II. Biochemistry 35: 3746-3753   DOI   ScienceOn
13 Retrieved from http://en.wikipedia.org/wiki/ Endocrine_disruptor. 2007
14 Oh, B.-K., Y.-K. Kim, K. W. Park, W. H. Lee, and J.-W. Choi. 2004. Surface plasmon resonance immunosensor for the detection of Salmonella typhimurium. Biosens. Bioelectron. 19: 1497-1504   DOI   ScienceOn
15 Park, I.-S., W.-Y. Kim, and N. Kim. 2000. Operational characteristics of an antibody-immobilized QCM system detecting Salmonella spp. Biosens. Bioelectron. 15: 167-172   DOI   ScienceOn
16 Hug, T. S., J. E. Prenosil, and M. Morbidelli. 2001. Optical waveguide lightmode spectroscopy as a new method to study adhesion of anchorage-dependent cells as an indicator of metabolic state. Biosens. Bioelectron. 16: 1865-1874
17 Nam, Y. S. and J.-W. Choi. 2006. Fabrication and electrical characteristics of ferredoxin self-assembled layer for biomolecular electronic device application. J. Microbiol. Biotechnol. 16: 15-19   과학기술학회마을
18 Tyler, C. R., B. Van der Eerden, J. P. Sumpter, S. Jobling, and G. Painter. 1996. Measurement of vitellogenin, a biomarker for exposure to oestrogen, in a wide variety of cyprinids. J. Comp. Physiol. 166: 418-426   DOI
19 Moon, D.-K., N. Kim, and W.-Y. Kim. 2006. Reactivity of the antibodies against purified carp vitellogenin and a synthetic vitellogenin peptide. J. Korean Soc. Appl. Biol. Chem. 49: 196-201   과학기술학회마을
20 Norberg, B. and C. Haux. 1988. An homologous radioimmunoassay for brown trout (Salmo trutta) vitellogenin. Fish Physiol. Biochem. 5: 59-68   DOI
21 Kolosova, A. Y., J. V. Samsonova, and A. M. Egorov. 2000. Competitive ELISA of chloramphenicol: Influence of immunoreagent structure and application of the method for the inspection of food of animal origin. Food Agric. Immunol. 12: 115-125   DOI   ScienceOn
22 Ramsden, J. J., S. Y. Li, E. Heinzle, and J. E. Prenosil. 1995. Optical method for measurement of number and shape of attached cells in real-time. Cytometry 19: 97-102   DOI   ScienceOn
23 Kuhlmeier, D., E. Rodda, L. O. Kolarik, D. N. Furlong, and R. Bilitewski. 2003. Application of atomic force microscopy and grating coupler for the characterization of biosensor surfaces. Biosens. Bioelectron. 18: 925-936   DOI   ScienceOn
24 Park, J.-S., S.-H. Lim, S. J. Sim, H. Chae, H. C. Yoon, S. S. Yang, and B.-W. Kim. 2006. Enhancement of sensitivity in interferometric biosensing by using a new biolinker and prebinding antibody. J. Microbiol. Biotechnol. 16: 1968-1976   과학기술학회마을
25 Ramsden, J. J., G. I. Bachmanova, and A. I. Archakov. 1996. Immobilization of proteins to lipid bilayers. Biosens. Bioelectron. 11: 523-528   DOI   ScienceOn
26 Chen, T. T. 1983. Identification and characterization of estrogen-responsive gene products in the liver of rainbow trout. Can. J. Biochem. Cell Biol. 61: 802-810   DOI
27 Kim, N., I.-S. Park, and D.-K. Kim. 2004. Characteristics of a label-free piezoelectric immunosensor detecting Pseudomonas aeruginosa. Sens. Actuators B Chem. 100: 432-438   DOI   ScienceOn
28 Pyun, J. C., H. Beutel, J.-U. Meyer, and H. H. Ruf. 1998. Development of a biosensor for E. coli based on a flexural plate wave (FPW) transducer. Biosens. Bioelectron. 13: 839-845   DOI   ScienceOn
29 Volotovsky, V., Y. J. Nam, and N. Kim. 1997. Urease-based biosensor for mercuric ions determination. Sens. Actuators B Chem. 42: 233-237   DOI   ScienceOn