• Title/Summary/Keyword: Induced Strain

Search Result 1,555, Processing Time 0.027 seconds

Study on the stress distribution depending on the bone type and implant abutment connection by finite element analysis (지대주 연결 형태와 골질에 따른 저작압이 임프란트 주위골내 응력분포에 미치는 영향)

  • Park, Hyun-Soo;Lim, Sung-Bin;Chung, Chin-Hyung;Hong, Ki-Seok
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.2
    • /
    • pp.531-554
    • /
    • 2006
  • Oral implants must fulfill certain criteria arising from special demands of function, which include biocompatibility, adequate mechanical strength, optimum soft and hard tissue integration, and transmission of functional forces to bone within physiological limits. And one of the critical elements influencing the long-term uncompromise functioning of oral implants is load distribution at the implant- bone interface, Factors that affect the load transfer at the bone-implant interface include the type of loading, material properties of the implant and prosthesis, implant geometry, surface structure, quality and quantity of the surrounding bone, and nature of the bone-implant interface. To understand the biomechanical behavior of dental implants, validation of stress and strain measurements is required. The finite element analysis (FEA) has been applied to the dental implant field to predict stress distribution patterns in the implant-bone interface by comparison of various implant designs. This method offers the advantage of solving complex structural problems by dividing them into smaller and simpler interrelated sections by using mathematical techniques. The purpose of this study was to evaluate the stresses induced around the implants in bone using FEA, A 3D FEA computer software (SOLIDWORKS 2004, DASSO SYSTEM, France) was used for the analysis of clinical simulations. Two types (external and internal) of implants of 4.1 mm diameter, 12.0 mm length were buried in 4 types of bone modeled. Vertical and oblique forces of lOON were applied on the center of the abutment, and the values of von Mises equivalent stress at the implant-bone interface were computed. The results showed that von Mises stresses at the marginal. bone were higher under oblique load than under vertical load, and the stresses were higher at the lingual marginal bone than at the buccal marginal bone under oblique load. Under vertical and oblique load, the stress in type I, II, III bone was found to be the highest at the marginal bone and the lowest at the bone around apical portions of implant. Higher stresses occurred at the top of the crestal region and lower stresses occurred near the tip of the implant with greater thickness of the cortical shell while high stresses surrounded the fixture apex for type N. The stresses in the crestal region were higher in Model 2 than in Model 1, the stresses near the tip of the implant were higher in Model 1 than Model 2, and Model 2 showed more effective stress distribution than Model.

Cloning and Functional Analysis of Gene Coding for S-Adenosyl-L-Methionine Synthetase from Streptomyces natalensis (Streptomyces natalensis로부터 S-adenosyl-L-methionine synthetase 유전자의 클로닝 및 기능분석)

  • Yoo, Dong-Min;Hwang, Yong-Il;Choi, Sun-Uk
    • Journal of Life Science
    • /
    • v.21 no.1
    • /
    • pp.96-101
    • /
    • 2011
  • S-Adenosyl-L-methionine synthtase (SAM-s) catalyzes the biosynthesis of SAM from ATP and L-methionine. SAM plays important roles in the primary and secondary metabolism of cells. A metK encoding a SAM-s was searched from Streptomyces natalensis producing natamycin, a predominantly a strong antifungal agent, inhibiting the growth of both yeasts and molds and preventing the formation of aflatoxin in filamentous fungi. To obtain the metK of S. natalensis, PCR using primers designed from the two highly conserved regions for metK genes of Streptomyces strains was carried out, and an intact 1.2-kb metK gene of S. natalensis was cloned by genomic Southern hybridization with PCR product as a probe. To identify the function of the cloned metK gene, it was inserted into pSET152ET for its high expression in the Streptomyces strain, and then introduced into S. lividans TK24 as a host by transconjugation using E. coli ET12567(pUZ8002). The high expression of metK in S. lividans TK24 induced actinorhodin production on R5 solid medium, and its amount in R4 liquid medium was 10-fold higher than that by exconjugant including only pSET152ET.

The Effect of Vandium on the microstructure and Elevated Temperature Sliding Wear Resistance of Fe-20Cr-1.7C-1Si-xV Hardfacing Alloy (Fe-20Cr-1.7C-1Si-xV 경면처리 합금의 미세조직과 고온 Sliding 마모저항성에 미치는 Vanadium의 영향)

  • Kim, Jun-Gi;Kim, Geun-Mo;Lee, Deok-Hyeon;Jang, Se-Gi;Gang, Seong-Gun;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.8 no.10
    • /
    • pp.969-974
    • /
    • 1998
  • The effect of vanadium, which is known to decrease the stacking fault energy of Fe-base alloys, on the microstructure and elevated temperature sliding wear resistance of Fe-20Cr- 1.7C- 1Si alloy was investigated. The maximum amount of vanadium maintaining the austenitic matrix seems to be about 3wt.% in Fe-20Cr- 1.7C-1Si-xV (x = 0, 1, 3, 6. lOwt.%) alloys and the austenitic alloys showed better wear resistance than ferritic alloys. It was considered to be due to the low stacking fault energy and $\gamma->\alpha$ strain-induced phase transformation at rmm temperature. It was shown from elevated temperature sliding tests up to .$225^{\circ}C$ that the addition of vanadium increases the temperature, at which the transition from oxidative wear to adhesive wear occur, and the amount of d formed at $225^{\circ}C$. Thus, it was considered that the addition of vanadium improves the elevated temperature sliding wear resistance of Fe-20Cr- 1.7C - 1Si by reducing the increasing rate of stacking fault energy with temperature and by increasing Ma temperature.

  • PDF

Identification of a New Agar-hydrolyzing Bacterium Vibrio sp. S4 from the Seawater of Jeju Island and the Biochemical Characterization of Thermostable Agarose (제주도 연안 해양에서 분리한 한천분해 미생물 Vibrio sp. S4의 동정 및 내열성 agarase의 생화학적 특성)

  • Lee, Chang-Ro;Chi, Won-Jae;Bae, Chang-Hwan;Hong, Soon-Kwang
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.4
    • /
    • pp.314-321
    • /
    • 2015
  • Agar-hydrolyzing bacteria were isolated from the coastal sea water of Jeju Island. One isolate, designated as S4, was selected for further study. The S4 cells were Gram-negative and rod-shaped with smooth beige surfaces and single polar flagellum. Cells were grown at $15-42^{\circ}C$, 0.5-5% (w/v) NaCl, between pH 6.0 and 9.0, and in media containing 0.5-5% (w/v) NaCl. The G+C content was 49.93 mol%. The major fatty acids (>15%) were $C_{18:1}{\omega}7c$, $C_{16:0}$ and Summed feature 3 (comprising $C_{16:1}{\omega}7c/iso-C_{15:0}$ 2-OH). Based on 16S rRNA sequencing and biochemical and chemotaxonomic characteristics, the strain was designated as Vibrio sp. S4. In liquid culture supplemented with 0.1% agar the cell density and agarase activity reached a maximum level in 72 h, while agarase activity in the culture without agar was negligible, implying agarose expression is induced by agar. The optimum pH and temperature for the extracellular crude agarase of S4 were 7.0 and $45^{\circ}C$, respectively. However, it also exhibited 98.6% and 87.6% at $40^{\circ}C$ and $50^{\circ}C$, respectively, of the maximum activity seen at $45^{\circ}C$. The crude agarase hydrolyzed agarose into (neo)agarotetraose and (neo)agarohexaose.

Antibacterial Effects and Cellular Responses of Imipenem-resistant Pseudomonas aeruginosa Exposed to Green Tea Polyphenols (녹차 폴리페놀에 노출된 Imipenem 내성 Pseudomonas aeruginosa의 항균효과 및 세포반응)

  • Song, You-Jin;Cho, Yun-Seok;Oh, Kye-Heon
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.2
    • /
    • pp.198-206
    • /
    • 2010
  • The aim of this work was to investigate the synergically bactericidal effects and cellular responses of tea polyphenols (TPP) and imipenem on imipenem-resistant Pseudomonas aeruginosa. Imipenem-resistant Ps. aeruginosa was isolated from patient in hospital. The bactericidal effects of TPP and imipenem were evaluated on the basis of its minimum inhibitory concentrations (MIC). The combined use of TPP and imipenem resulted in 16-fold and 8-fold reductions in the MICs of imipenem for the imipenem-susceptible and imipenem-resistant Ps. aeruginosa, respectively. The bactericidal effects of the imipenem and TPP against the Ps. aeruginosa was evaluated using the time-kill assay. The synergetic effects of the combinations of TPP and imipenem against Ps. aeruginosa were confirmed. Western blot using anti-DnaK and anti-GroEL monoclonal antibodies was performed to investigate the expression of stress shock proteins (SSPs) in imipenem-susceptible and imipenem-resistant strains exposed to TPP. The amount of SSPs were induced as the exposure time increased and decreased. The molecular weights of DnaK and GroEL were 70 kDa and 60 kDa, respectively. SDS-PAGE with silver staining revealed that the amount of lipopolysaccharides (LPS) increased or decreased in the strain treated to different concentrations and exposing periods of TPP. Scanning electron microscopic analysis demonstrated the presence of umblicated and wrinkled surfaces for cells treated with TPP or imipenem.

Studies of cold resistant glycine betaine effect on cold sensitive Bacillus subtilis mutant strains (저온 민감성 바실러스 서브틸리스 돌연변이 균주에서 glycine betaine의 저온 내성에 미치는 영향에 대한 연구)

  • Kim, Do Hyung;Lee, Sang Soo
    • Korean Journal of Microbiology
    • /
    • v.54 no.3
    • /
    • pp.200-207
    • /
    • 2018
  • At high salt concentration, glycine betaine is transported into Bacillus subtilis and growing rate of the cell is not suppressed. Also according to recent studies, cell growth is maintained normal growth rate at low temperature. Low temperature results in a stress response of Bacillus subtilis that is characterized by strong repression of major metabolic activities such as translation machinery and membrane transport. In this regards, genes showing cold sensitive phenotype are cold-induced DEAD box RNA helicases (ydbR, yqfR) and fatty acid desaturases (bkdR, des). Therefore to understand the effect of glycine betaine on cold growth of Bacillus subtilis, we investigated the effect of glycine betaine on growth rate of these deletion mutants showing cold sensitive phenotype. Glycine betaine strongly stimulated growth of wild type Bacillus subtilis JH642 and deletion mutants of ydbR and yqfR at $20^{\circ}C$ (190~686 min $T_d$ difference). On the other hands, glycine betaine does not show growth promoting effects on deletion mutants of bkdR, and des at cold conditions. Same cold protectant growth results were shown with the precursor choline instead of glycine betaine. We investigated the effects of detergents on the cell membrane in bkdR and des deficient strains associated with cell membrane. It was identified that bkdR deficient strain shows retarded growth with detergent such as Triton X-100 or N-lauryl sarcosine compared with wild type cell. Thus, it is possible that deletion mutation of bkdR modifies membrane structure and effects on transport of glycine betaine.

Anti-stress Effect of Pyroligneous Liquid in SD Rats and ICR Mice

  • Kim, Mi Kang;Yu, Gu Yong;Tan-Lee, Blendyl Saguan;Oh, Hyun Jin;Dong, Kyung Woo;Jeong, Seung Hwa;Han, Seong Wook;Cheong, Jae Hoon
    • Biomolecules & Therapeutics
    • /
    • v.11 no.4
    • /
    • pp.249-256
    • /
    • 2003
  • Pyroligneous liquid(PL) is produced by carbonizing Oak in 350-40$0^{\circ}C$. It is traditionally used for treating stress-related disorder, hepatic disease, immune disorder, G-I disorder and inflammatory disease. The aim of this study is to investigate anti-stress effects of PL. The experiments were performed with the use of young(9 weeks of age) male rats of SD strain and the male ICR mice (20-25 g). Animals of the normal group were not exposed to any stress and the control group were exposed to stress. The rats of the Ginseng, diazepam(BZ) and PL supplementary group were orally administered once a day 100 g of Ginseng extract-kg body weight, 5 mg of BZ/kg body weight and 1 ml of PL100 g body weight and then exposed to stress. The mice of the Ginseng, BZ and PL supplementary group were given water containing 100 g of Ginseng extract/100 ml potable water, 5 mg of BZ/kg 100 ml of drinking water and 10 ml of PL/100 ml of drinking water and exposed to stress. Animals were given materials for 7 days after stabilizing them, and then were given supplementary materials for 5 days with stress. They were stressed by immobilization for 30 minutes and then the animals were exposed to electroshocks for 5 minutes. We recorded stress-related behavioral changes of experimental animals by stressing them using the Etho-vision system and measured the levels of corticosterone in blood While stress suppressed locomotor activity of animals, PL-supplementation partially blocked the stress effect of locomotion in rats and mice, and also partially blocked stress-induced behavioral changes such as freezing, burrowing, smelling and rearing activity in rats and freezing, grooming, tailing and rearing in mice. The staying time of stressed rats and mice in open area decreased and in closed area it increased relatively in elevated plus maze test. However, these changes also partially were blocked by PL-supplementation. PL-supplementation decreased levels of blood corticosterone increased by stress in rats. These results suggest that PL protects partially the living organism from stress attack in some cases.

Acquirement of transgenic rose plants from embryogenic calluses via Agrobacterium tumefaciens (배발생 캘러스를 이용한 아그로박테리움 매개형질전환 장미 식물체 획득)

  • Lee, Su-Young;Lee, Jung-Lim;Kim, Won-Hee;Kim, Seung-Tae;Lee, Eun-Kyung
    • Journal of Plant Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.511-516
    • /
    • 2010
  • The process to acquire intron-GUS gene-expressed transformants from somatic embryos (including embryogenic calli) of Rosa hybrida cv. 'Sweet Yellow' using Agrobacterium-meditated transformation method was reported in this study. Somatic embryos including embryogenic calluses were infected with Agrobacterium tumefaciens AGL1 strain (O.D = 0.7~1.6) including intron-GUS gene for 30 min, and were co-cultured for 3 days. After co-cultivation, they were cultured on embryo germination medium (EGM) supplemented with $250\;mg{\cdot}L^{-1}$ cefotaxim at $4^{\circ}C$ for 7 days. Then, transient GUS gene expression was observed. Shoots were regenerated from the shoot primodia induced from the intron-GUS gene-transferred either somatic embryos or embryogenic calli cultured on EGM supplemented with both cefotaxim $250\;mg{\cdot}L^{-1}$ and ppt $2\;mg{\cdot}L^{-1}$. Before induction of rooting from shoots cultured on shoot growing medium supplemented with both cefotaxim $250\;mg{\cdot}L^{-1}$ and ppt $2\;mg{\cdot}L^{-1}$, the shoots were cultured on multi-shoot induction medium supplemented with both cefotaxim $250\;mg{\cdot}L^{-1}$ and ppt $2\;mg{\cdot}L^{-1}$ to induce multi-shoots. When expression of the gene from a part of the multi-shoots was identified by GUS transient assay, the putative transgenic multishoots were transferred to rooting medium supplemented with cefotaxim $250\;mg{\cdot}L^{-1}$. After the formation of healthy roots, transgenic plantlets were transferred to the greenhouse after acclimatization. The expression rate of the intron-GUS gene in the multi-shoots was 100%.

Effect of Lead Exposure During Lactational Period on Anxiety in Rat Using Elevated Plus Maze Test (수유기동안 납 투여가 성숙 쥐의 불안감 관련 행동양상에 미치는 영향)

  • Lim Sun-Young
    • Journal of Life Science
    • /
    • v.15 no.6 s.73
    • /
    • pp.979-986
    • /
    • 2005
  • Lead (Pb) exposure during development can produce neurological deficits. In this study, the effect of Pb exposure during neonatal development via lactation on anxiety of brain function was investigated. Long-Evans strain rats were raised through two generations. At the birth of the second generation, the dams were subdivided into two groups and supplied drinking water containing either $0.2\%$ Pb (Pb-treated group) or sodium (Na, Control group) acetate until weaning. Rats were sacrificed at 3 (weaning) and 11 weeks (maturity) for brain Pb and fatty acid analysis. Motor activity and elevated plus maze tests were initiated at 9 weeks. The brains in the Pb-treated group at weaning and maturity contained 1486$\pm$98 and $270{\pm}46$ ng Pb/g, respectively The control group showed the background level of Pb ($3.7{\pm}1.0_{ng}$ Pb/g) in both ages. The alterations in brain fatty acid composition induced by Pb exposure were more evident in 3 wks old than 11 wks old. For example, in 3 wks old, the percentages of $18:2_{n-6}$, $20:2_{n-6}$ and $18:2_{n-6}$ were decreased in the Pb-treated group with an increase in $20:4_{n-6}$ In motor activity test, there was a tendency of hyperactivity in the Pb-treated group compared with the control group but the difference was not significant. In elevated plus maze test, the Pb-treated group showed fewer numbers of visits to the open arms (P < 0.05), indicating that Pb exposure may lead to anxiogenic effect.

Characteristics of Heavy Metal Biosorption by Enterobacter intermedious KH410 (Enterobacter intermedious KH410의 중금속 흡착 특성)

  • 김영희;정영기;김광현;김병우;정경태;김병석;박지원;이동준;신현철
    • Journal of Life Science
    • /
    • v.13 no.4
    • /
    • pp.421-427
    • /
    • 2003
  • A natural habit at bacterium, Enterobacter intermedious KH410 was isolated from freshwater plant root and identified. Adsorption of heavy metals such as lead, cadmium, and copper by this strain was examined. The minimal inhibitory concentrations(MIC) for each metal were 1.78 mM for lead, 0.17 mM for cadmium and 1.39 mM for lopper, respectively. Maximum production of dried cell was 2.56 g/$\ell$ in LB medium containing 0.5% NaCl, 1% yeast extract and 1% of lactose. Optimal conditions for adsorption were 0.6 dry g-biomass, at pH 4.0 and the temperature of $20^{\circ}C$. Adsorption equilibrium reached maximum after 30 min in 400 mg/$\ell$ metal solution. The adsorption capacity (K) of copper was 1.5 times higher than that of cadmium and lead was 1.1 times higher than that of cadmium. from the results obtained in this study, Freundlich adsorption model was applicable for all metals. Adsorption strength (1/n) of heavy metal ions were in the order of cadmium>copper>lead. The adsorption of dried cell for lead, cadmium, and copper was 56.2, 58.0, 55.8 mg/g-biomass, respectively. Pretreatment to increase ion strength was the most effective with 0.1 M NaOH whereas slight difference was found both KOH and $CaCl_2$ upon same concentration. Effective desorption was induced by 0.1 M EDTA for lead and 0.1 M $HNO_2$ for cadmium and copper.