Browse > Article
http://dx.doi.org/10.5352/JLS.2005.15.6.979

Effect of Lead Exposure During Lactational Period on Anxiety in Rat Using Elevated Plus Maze Test  

Lim Sun-Young (Division of Marine Environment & Bioscience, Korea Maritime University)
Publication Information
Journal of Life Science / v.15, no.6, 2005 , pp. 979-986 More about this Journal
Abstract
Lead (Pb) exposure during development can produce neurological deficits. In this study, the effect of Pb exposure during neonatal development via lactation on anxiety of brain function was investigated. Long-Evans strain rats were raised through two generations. At the birth of the second generation, the dams were subdivided into two groups and supplied drinking water containing either $0.2\%$ Pb (Pb-treated group) or sodium (Na, Control group) acetate until weaning. Rats were sacrificed at 3 (weaning) and 11 weeks (maturity) for brain Pb and fatty acid analysis. Motor activity and elevated plus maze tests were initiated at 9 weeks. The brains in the Pb-treated group at weaning and maturity contained 1486$\pm$98 and $270{\pm}46$ ng Pb/g, respectively The control group showed the background level of Pb ($3.7{\pm}1.0_{ng}$ Pb/g) in both ages. The alterations in brain fatty acid composition induced by Pb exposure were more evident in 3 wks old than 11 wks old. For example, in 3 wks old, the percentages of $18:2_{n-6}$, $20:2_{n-6}$ and $18:2_{n-6}$ were decreased in the Pb-treated group with an increase in $20:4_{n-6}$ In motor activity test, there was a tendency of hyperactivity in the Pb-treated group compared with the control group but the difference was not significant. In elevated plus maze test, the Pb-treated group showed fewer numbers of visits to the open arms (P < 0.05), indicating that Pb exposure may lead to anxiogenic effect.
Keywords
lead toxicity; neonatal development; elevated plus maze; anxiety;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Donaldson, W. E. and T. K. Leeming. 1984. Dietary lead: effects on hepatic fatty acid composition in chicks. Toxicol. Appl. Pharmacol. 73, 119-123   DOI   ScienceOn
2 Charon, S., S. Vancassel, L. Zimmer, D. Guilloteau and G. Durand. 2001. Polyunsaturated fatty acids and cerebral function: focus on monoaminergic neurotransmission. Lipids 36, 937-944   DOI   ScienceOn
3 Nihei, M. K., N. L. Desmond, J. L. McGlothan, A. C. Kuhlmann and T. R. Guilarte. 2000. N-methyl-D-asparate receptor subunit changes are associated with lead-induced deficits of long-tem potentiation and spatial learning. Neuroscience 99, 233-242   DOI   ScienceOn
4 File, S. E., H. Zangrossi, M. Viana and F. G. Graeff. 1993. Trial 2 in the elevated plus-maze: a different form of fear? Psychopharmacology (Berl) 111, 491-494   DOI
5 Sanchez-Fructuoso, A. I., J. Blanco, M. Cano, L. Ortega, M. Arroyo, C. Fernandez, D. Prats and A. Barrientos. 2002. Experimental lead nephropathy: treatment with calcium disodium ethylenediaminetetraacetate. Am. J. Kindey Dis. 40, 59-67   DOI   ScienceOn
6 Park, J. R., M. Kim and Y. S. Lee. 2005. Effects of chitosan on the lead level and histological changes in rats exposured to various levels of lead. Kor. J. Nutr. 38, 48-55
7 Reeves, P. G., F. H. Neilsen and G. C. Fahey. 1993. Committee report on the AIN-93 purified rodent diet. J. Nutr. 123, 1939-1951
8 Salem, N., M., Reyzer and J. Karanian. 1996. Losses of arachidonic acid in rat liver after alcohol inhalation. Lipids 31, S153-156   DOI
9 Willson, M. A., M. V. Johnston, G. W. Goldstein and M. E. Blue. 2000. Neonatal lead exposure impairs development of rodent barrel field cortex. Proc. Natl. Acad. Sci. U. S. A. 97, 5540-5545
10 Sui, L., S. Y. Ge, D. Y. Ruan, J. T. Chen, Y. Z. Xu and M. Wang. 2000. Age-related impairment of long-term depression in area CA1 and dentate gyrus of rat hippocampus following developmental lead exposure in vivo. Neurotoxicol. Teratol. 22, 381-387   DOI   ScienceOn
11 Zimmermann, L., N. Pages, H. Antebi, A. Hafi, C. Boudene and L. G. Alcindor. 1993. Lead effect on the oxidation resistance of erythrocyte membrane in rat triton-induced hyperlipidemia. Biol. Trace Elem. Res. 38, 311-318   DOI   ScienceOn
12 Huang, F. and J. S. Schneider. 2004. Effects of lead exposure on proliferation and differential of neural stem cell derived from different regions of embryonic rat brain. Neuro Toxicol. 25, 1001-1012
13 Knowles, S. O. and W. E. Donaldson. 1996. Dietary lead alters fatty acid composition and membrane peroxidation in chick liver microsomes. Poult. Sci. 75, 1498-1500   DOI   ScienceOn
14 Knowles, S. O., W. E. Donaldson and J. E. Andrews. 1998. Changes in fatty acid composition of lipids from birds, rodents, and preschool children exposed to lead. Biol. Trace Elem. Res. 61, 113-125   DOI   ScienceOn
15 Lawton, L. J. and W. E. Donaldson. 1991. Lead-induced tissue fatty acid alterations and lipid peroxidation. Biol. Trace Elem. Res. 28, 83-97   DOI   ScienceOn
16 Kuhlmann, A. C., J. L. McGlothan and T. R. Guilarte. 1997. Developmental lead exposure causes spatial learning deficits in adult rats. Neurosci. Lett. 233, 101-104   DOI   ScienceOn
17 Kwon, O. D. 2000. Histopathologic studies on the experimental lead poisioning in rats. Kor. J. Vet. Clin. Med. 17, 70-75
18 Lasley, S. M., M. C. Green and T. R. Gilberte. 1999. Influence of exposure period on in vivo hippocampal glutamate and GABA release in rats chronically exposured to lead. Neurotoxicology 20, 619-629
19 Morrison, W. R. and L. M. Smith. 1959. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron-fluoride-methanol. J. Lipid Res. 5, 600-608
20 Murphy, K. J. and C. M. Regan. 1999. Low-level lead exposure in the early postnatal period results in persisting neuroplastic deficits associated with memory consolidation. J. Neurochem. 72, 2099-2104   DOI   ScienceOn
21 Niu, S. L., D. C. Mitchell, S-Y. Lim, Z. M. Wen, H. Y. Kim, N. Salem and B. J. Litman. 2004. Reduced G protein-coupled signaling efficiency in retinal rod outer segments in response to n-3 fatty acid deficiency. J. Biol. Chem. 279, 31098-31104   DOI   ScienceOn
22 Garavan, H., R. E. Morgan, D. A. Levisky, L. Hermer-Vazquez and B.J. Strupp. 2000. Enduring effects of early lead exposure: evidence for a specific deficit in associative ability. Neuratoxicol. Teratol. 22,151-164   DOI   ScienceOn
23 Gilbert, M. E. and C. M. Mack. 1998. Chronic lead exposure accelerates decay of long-term potentiation in rat dentate gyrus in vivo. Brain Res. 789,139-149   DOI   ScienceOn
24 Hammond, P. B. and P. A. Succop. 1995. Effect of supplemental nutrition on lead-induced depression of growth and food consumption in weanling rats. Toxicol. Applied Pharmacal. 131,80-84   DOI   ScienceOn
25 Gilbert, M. E., C. M. Mack and S. M. Lasley. 1999.The influence of developmental period of lead exposure on long-term potentiation in the adult rat dentate gyrus in vivo. Neuratoxicology 20, 57-69
26 Gordon, J.M., A. Taylor and P. N. Bennett. 2001. Lead poisoning: case studies. Br. J. Clin. Phamacol. 53, 451-458
27 Graeme, K. A and C. V. Pollack. 1998.Heavy metal toxicity, Part 2: Lead and metal fume fever. J. Emergency Med. 16, 171-177   DOI   ScienceOn
28 Hibbeln, J. R. and N. Salem. 2001. Omega-3 fatty acids and psychiatric disorders. pp 3-22, In Mostofsky et al. (eds.), Fatty acids. Humana Press Inc., Totowa
29 Hilson, J. A. and B. J. Strupp. 1997. Analyses of response patterns clarify lead effects in olfactory reversal and extradimensional shift tasks: assessment of inhibitory control, associative ability, and memory. Behavioral Neurosci. 111, 532   DOI   ScienceOn
30 Hong, C.M. 2001. Effectof repeated exposure to Pb acetate on hematopoietic function, testis and kidney in male rats. J. Toxicol. Pub. Health 17, 309-316
31 Hong, C.M.,C.Y.Yoon, Y.Y. Cho, J. J. Hong, J. Y. Song, J. H. Yang, D. H. Cho, C.H. Chae, M. H. Cho, K. H. Yang and C.K Kim. 2000. Age effects of repeated exposure to lead acetate on pathological changes in male rats. Ann. Report KFDA. 4, 456-466
32 Pellow, S. and S. E. File. 1986. Anxiolytic and anxiogenic drug effects on exploratory activity in an elevated plus-maze: A novel test of anxiety in the rat. Pharmocol. Biochem. Behav. 24, 525-529   DOI   ScienceOn
33 Carobrez, A. P. and L. J. Bertoglio. 2005. Ethological and temporal analyses of anxiety-like behavior: The elevated plusmaze model 20years on. Neurosci. Biobehav. Rev. 29,1-13   DOI   ScienceOn
34 Jett, D. A., A. C. Kuhlmann, S. J. Farmer and T. R. Guilarte. 1997. Age-dependent effects of developmental lead exposure on performance in the Morris water maze. Pharmacol. Biochem. Behav. 57, 271-279   DOI   ScienceOn
35 Osterode, W. and F. Ulberth. 2000. Increased concentration of arachidonic acid in erythrocyte membranes in chronically lead-exposed men. J. Toxicol. Environ. Health A 59, 87-95   DOI   ScienceOn
36 Dubas, T. C. and P. D. Hrdina. 1978. Behavioural and neurochemical consequences of neonatal exposure to lead in rats. J. Environ. Pathol. Toxicol. 2, 471-484
37 Ahmad, A., T. Moriguchi and N. Salem. 2002. Decrease in neuro size in docosahexaenoic acid-deficient brain. Pediatr. Neurol. 26, 210-218   DOI   ScienceOn
38 Banks, E. C., L. E. Ferretti and D. W. Shucard. 1997. Effects of low level lead exposure on cognitive function in children: a review of behavioral, neuropsychological and biological evidence. Neurotoxicol. 18, 237-281
39 Calderon, F.and H. Y. Kim. 2004. Docosahexaenoic acid promotesneurite growth in hippocampalneurons. J. Neurochem. 90,979-988   DOI   ScienceOn
40 Estefania, G. M., L. Vassilieff and V. S. Vassilieff. 2001. Developmental lead exposure: behavioral alterations in the short and long term. Neurotoxicol. Terratol. 23,489-495   DOI   ScienceOn
41 File, S. E.and L. E. Gonzalez. 1996. Anxiolytic effects in the plus-maze of 5-HTlA-receptorligands in dorsal raphe and ventral hippocampus. Pharmacol. Biochem. Behav. 54, 123-128   DOI   ScienceOn
42 Finkelstein, Y., M. E. Markowitza and J. F. Rosen. 1998. Low-level lead-induced neurotoxicity in children: an update on central nervous system effects. Brain Res. Rev. 27, 168-176   DOI   ScienceOn
43 Folch, J., M. Lees and G. Sloane-Stanley.1957.Asimple method for the isolation and purification of total lipid from boron fluoride-methanol. J. Biol. Chem. 226,495-509
44 Morgan, R. E., H. Garavan, E. G. Smith, L. L. Driscoll, D. A. Levitsky and B. J. Strupp. 2001. Early lead exposure produces lasting changes in sustained attention, response initiation, and reactivity to errors. Neurotoxicol. Teratol. 23, 519-531   DOI   ScienceOn