• 제목/요약/키워드: Indoor thermal comfort

검색결과 244건 처리시간 0.037초

온도변동에 따른 인체 생리적 반응 -제2보: 맥파를 중심으로- (Physiological Response of Human Body by Temperature Change -Part 2: In Priority to Pulse wave-)

  • 강석중;금종수;김동규;정용현;이낙범
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.23-28
    • /
    • 2007
  • In most existing research, it is difficult to evaluate thermal comfort exactly because of reflecting individual ideal or psychological response by subjective questions. Physiological variable was selected in this study to evaluate objectively thermal comfort. MST was appeared very sensitively in indoor temperature and can express correctly thermal comfort of human body. The results of CSV are different each individual feeling sensation, so is difficult to evaluate detailedly thermal comfort unlike TSV. But the results of PP, AIx, ED, SEVR are greatly related to temperature change. So thermal comfort is evaluated more objectively by using PP, AIx, ED, SEVR on behalf of TSV, CSV. Human body was presented physiological feedback by temperature impetus and specially, tendency of heart rate agree with temperature change. Physiological reaction was showed sufficient possibility availing evaluation index of thermal comfort. In the future another one needs to review beside the selected physiological variable.

  • PDF

대공간의 실내온열환경 실측 및 분석 (The Field Measurement and Analysis of Indoor Thermal Environment in Large Enclosures)

  • 채문병;양정훈;최동호;석호태
    • 한국공간구조학회논문집
    • /
    • 제8권1호
    • /
    • pp.77-88
    • /
    • 2008
  • 본 연구에서는 대공간을 동계 및 하계로 구분하여 실내온열환경의 변화를 실측하고 냉 난방조건과 관련하여 대공간에서 형성되는 실내온열환경의 특성을 파악하는 것을 목적으로 하여, 대공간의 수직 및 수평온도분포, 객석온도분포, 실내표면온도분포, 실내온열쾌적성 등의 실내온열환경을 검토하였다.

  • PDF

온열감각 기반 습도제어를 통한 여름철 건물의 열쾌적 및 에너지성능 향상 (Thermal sensation based humidity controls for improving indoor thermal comfort and energy efficiency in summer)

  • 문진우;진경일;김상철;이광호
    • KIEAE Journal
    • /
    • 제14권1호
    • /
    • pp.75-81
    • /
    • 2014
  • This study aims at investigating the benefit of actively controlling humidity to improve thermal comfort and energy efficiency in climate zones other than hot-dry. For this research purpose, three thermal control strategies, which adopted different initiative degrees in humidity control, were developed - i) temperature controls, ii) temperature and humidity controls, and iii) thermal sensation controls. Performance of the developed strategies were experimentally tested in a full scale mock up of an office environment. The study revealed that air temperature was better controlled in the occupied zone under the first two strategies than the thermal sensation based strategy. On the other hand, the thermal sensation-based strategy maintained thermal sensation levels more comfortably. In addition, energy consumption was significantly reduced when humidity was actively controlled for thermal comfort. The thermal sensation-based control strategy consumed significantly less electricity than the first two strategies. From these findings, this study indicated that adoption of an active humidity control system based on thermal sensation can provide increased thermal comfort as well as energy savings for summer seasons in climatic zones other than hot-dry.

신조 운항실습선의 봄철 실내 온열환경 실측평가 (A Measurement and Evaluation on the Indoor Thermal Conditions in Spring of a New Training ship)

  • 신동걸;이진욱;이형기;박윤철;황광일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권8호
    • /
    • pp.939-946
    • /
    • 2007
  • The purpose of this study is to measure and analyze the ship's indoor thermal conditions and also to integrate experimental database of those, supplied and controlled by ship's HVAC. On this study, temperature, humidity and air volume of 6 different needs' cabin are measured on a newly-launched training ship during 2nd through 5th of April, 2007. Followings are the results of this study. (1)Because only partial loads are needed in spring season, the air volume from diffusers are measured as below 20%. (2)The temperatures are ranged between $20{\sim}25^{\circ}C$ and those are within comfort temperature range proposed by AHREA. (3)But humidities in cabins are very low and it could be the reason of a cold and/or a skin disease. (4)From the student cabins' measurements which have different supply diffuser(s), it is clear that the design is suitable for this case. (5)Because of low humidity, only 16.1% among the measured data are satisfied with the comfort standard range proposed by ASHREA. To improve the predictability and the comfort, HVAC should maintain the humidity as $40{\sim}60%$.

실내(室內) 온열환경지표(溫熱環境指標)의 평가방법에 관한 연구 (A Study on the Evaluation Methods of Indoor Thermal Comfort Index in Building)

  • 정창원;호리코시 데츠스미;윤인;최영식
    • 한국산업융합학회 논문집
    • /
    • 제2권2호
    • /
    • pp.11-21
    • /
    • 1999
  • This objective of this paper is to investigate the evaluation and indiction of human thermal comfort in building environment. The issue of defining the boundaries of acceptable thermal comfort conditions in buildings and urban may have significant implication for building design and also may have urban design by climate considerations. And then it is to apply the thermal comfort condition to environmental design by using passive methods in Korea. Since 1920. architects have conducted studies to measure thermal comfort in houses under hot and humid conditions, while industrial hygienists have studied the effects of temperature and humidity on the performance of factory workers. Thermal comfort can be influenced by many variables. This paper conducted to review the previous researches and the human heat balance equation, and to analyse in order to reveal the meaning and usage of the thermal comfort index in two traditional essays, Fanger's PMV and Gagge's ET* Their comfort indexes compared with each other. They were based on human heat balance equation and psychological and physiological responses in the laboratory tests. The researchers and the architectural engineers using thermal comfort index shall be careful in decided the use of indexes and be necessary to recognize the value concept of the design criteria for thermal comfort. Therefore, The opinion of the authors is that different comfort standards have to apply for each building and urban with different climatic conditions.

  • PDF

실내 온열환경 제어를 위한 PMV 센서의 개발 및 적용성 평가연구 (Development and Evaluation of a PMV Sensor for the Control of Indoor Thermal Environment)

  • 윤동원;강효석;안병욱
    • 설비공학논문집
    • /
    • 제15권10호
    • /
    • pp.870-878
    • /
    • 2003
  • The maintenance of thermal equilibrium between the human body and its environment is one of the primary requirements for health, wellbeing and comfort. For the effective control of indoor thermal environment, thermostat or humidistat is used. But, it is not sufficient to control the indoor thermal environment using only one or two parameters as human response for the indoor comfortable environment. So an environmental thermal index is required for the control of indoor thermal environment effectively. In this study, a PMV sensor has been developed which has integrated from various kinds of individual sensors for temperature, humidity, air velocity, radiant temperature. After applying the PMV and PPD equation, it is possible to monitor the indoor thermal environment with the sensor system, which is adopted to the circuit for optimization according to the human response with the metabolic rate and activities. The measurement was carried out to verify the performance of the integrated sensor system in comparison with existing measurement system, the PMV meter. As a result, the possibility of applying the PMV sensor to control the indoor thermal environment simultaneously was examined.

Unsteady-state CFD 시뮬레이션을 이용한 여름철 공동주택 외부공간의 온열환경 및 쾌적성 평가 (Evaluation of the Thermal Environment and Comfort in Apartment complex using Unsteady-state CFD simulation)

  • 전미영;이승재;김지영;이승복;김태연
    • KIEAE Journal
    • /
    • 제10권4호
    • /
    • pp.67-73
    • /
    • 2010
  • As more and more people desire to live in an apartment complex with a comfortable outdoor space, many construction company became interested in outdoor design. In order to increase the use of outdoor space and create the most pleasant environment, outdoor thermal environment and comfort should be evaluated quantitatively from the design stage. This study utilized ENVI-met 3.1 model to analyze outdoor thermal environment in apartment complex, and evaluated outdoor thermal comfort in 6 points of apartment complex. The physiologically equivalent temperature(PET) was employed as a outdoor thermal index. Playground B had a poor thermal environment with the maximum PET $43^{\circ}C$ (Very hot). Because shading by building and tree didn't affect outdoor thermal environment of playground B. To design comfortable outdoor space from the view point of thermal environment, the factors influencing Mean radiant temperature(MRT) and wind speed should be considered in design stage. Since it is difficult to control outdoor thermal environment compared with indoor environment, we should take into account an assessment for outdoor thermal environment and comfort in outdoor design stage.

대류 난방시 실내열환경에 관한 연구 -상하온도차에 대한 온열쾌적감- (The Study on Indoor Thermal Environment during Convection Heating - Thermal Comfort Sensation for Vertical Temperature Differences -)

  • 김동규;금종수
    • 한국환경과학회지
    • /
    • 제14권2호
    • /
    • pp.215-220
    • /
    • 2005
  • Thermal neutrality is not enough to achieve thermal comfort. The temperature level can be the optimal, and still people may complain. This situation is often explained by the problem of local discomfort. Local discomfort can be caused by radiant asymmetry, local air velocities, too warm and too cold floor temperature and vertical temperature difference. This temperature difference may generate thermal discomfort due to different thermal sensation in different body parts. Therefore, thermal comfort can not be correctly evaluated without considering these differences. This study investigates thermal discomfort sensations of different body parts and its effect on overall thermal sensation and comfort in air-heating room. Experimental results of evaluating thermal discomfort at different body parts in an air-heating room showed that thermal sensation on the shoulder was significantly related to the overall thermal sensation and discomfort. Although it is known that cool-head, warm-foot condition is good for comfort living, cool temperature around the head generated discomfort.

A Study on Thermal Comfort Comparison between Tencel and Polyester Indoor Cothing

  • Chung, Sham-Ho;Yoo, Eun-Ok;Hwang, Soo-Kyung;Lee, Han-Seop
    • International Journal of Costume and Fashion
    • /
    • 제9권1호
    • /
    • pp.34-43
    • /
    • 2009
  • This study compared the thermal comfort of indoor clothing from Tencel material that is getting higher in demand due to being eco-friendly with superior wettability, with that from Polyester material that despite being most widely used for indoor clothing, rapidly discharges body sweat due to low wettability. The experiments were performed in the two manners, objective evaluation under the conditions of an artificial climate chamber and subjective evaluation of wearing the given clothes at home followed by filling in the questionnaire. Subjects were 8 healthy elderly women in their 60's who spend majority of their time at home rather than in social activities, and comparison was made on skin temperature and humidity inside clothing at exercise and relaxation states under early summer environment. Based on these results, wearing Tencel material clothing maintained cooler temperatures under warm environment rather than when wearing Polyester material clothing, thus enabling activities under more comfortable state. Regarding humidity inside clothing, parts with twofold clothing did not show difference between Tencel and Polyester, but the onefold arm showed lower when wearing Tencel. With this results, Tencel is regarded as more comfortable and nicer than Polyester.

통나무집의 동절기 실내 온열환경 요소의 측정과 온열감 평가에 관한 연구 (A Study on Examination of Indoor Thermal Environment Elements and Thermal Sensation Vote of Log Cabins in Winter Season)

  • 민병철;전지현;국찬
    • 한국주거학회논문집
    • /
    • 제18권2호
    • /
    • pp.21-27
    • /
    • 2007
  • Various buildings constructed by environmentally friendly resources are being built in KOREA. Especially as the wood has distinctive ecological merits in comparison with reinforced concrete and brick, the buildings made by the wood are acknowledged with its superiority of ecological value. Enough field studies for their thermal environment, however, haven't been done. In this study, to investigate indoor environmental condition and occupants' response to it of Log Cabin in Gyeongsangnam-do Hamyang Country Jirisan Natural Recreation Forest, examination of indoor thermal environment and field subjective evaluation have been done in that fundamental information of thermal environment characteristics can be suggested. The results are following; 1) Thermal environment of the Log Cabins; Indoor and outdoor mean dry bulb temperature were $21.9^{\circ}C$ and $-3.1^{\circ}C$, and Indoor and outdoor average relative humidity were 25.8% and 52.1%. These results are below ASHRAE; dry bulb temp. $22.0^{\circ}C$, humidity 30%, and above domestic standards; dry bulb temp. $18{\sim}20.0^{\circ}C$, humidity $40{\sim}60%$. 2) Result of subjective evaluation; Thermal sensation and its comfort were evaluated as 'slightly uncomfortable' because of 'slightly warm'. And humid sensation and its comfort were evaluated as 'slightly uncomfortable' because of 'slightly warm'. 3) Result of vertical temperature and humidity; Vertical temperature difference from head to ankle was $0.54^{\circ}C$ which means most occupants may feel comfortable.