• Title/Summary/Keyword: Indoor navigation

Search Result 338, Processing Time 0.039 seconds

A Study of Subspacing Strategy for Service Applications in Indoor Space (실내공간 응용 서비스를 위한 공간분할 방법에 관한 연구)

  • Kang, Hye Young;Jung, Hyo-jin;Lee, Jiyeong
    • Spatial Information Research
    • /
    • v.23 no.3
    • /
    • pp.113-122
    • /
    • 2015
  • Recently, according to developing advanced construction technologies, buildings has been enlarged such as high-rise buildings or complex buildings associated with underground facilities. The number of indoor activity population has increased very quickly. Because of that, technical requirements for Indoor location based service (Indoor LBS) also have been increased. Although indoor networks have to be constructed for efficient LBSs in indoor space based on OGC IndoorGML, it is not suitable for large and complex space to apply the simple network structure to constructing indoor navigation networks. The indoor navigation network has to be constructed according to logical, physical, and functional constraints for indoor space. In order to do that, subspacing methods are required to partition large and complex indoor space into proper size of subspace. In this paper, we proposed the basic requirements of subspacing in indoor space for creating efficient indoor network, as well the work process of subspacing in indoor space.

Mobile Robot Localization Based on Hexagon Distributed Repeated Color Patches in Large Indoor Area (넓은 실내 공간에서 반복적인 칼라패치의 6각형 배열에 의한 이동로봇의 위치계산)

  • Chen, Hong-Xin;Wang, Shi;Han, Hoo-Sek;Kim, Hyong-Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.4
    • /
    • pp.445-450
    • /
    • 2009
  • This paper presents a new mobile robot localization method for indoor robot navigation. The method uses hexagon distributed color-coded patches on the ceiling and a camera is installed on the robot facing the ceiling to recognize these patches. The proposed "cell-coded map", with the use of only seven different kinds of color-coded landmarks distributed in hexagonal way, helps reduce the complexity of the landmark structure and the error of landmark recognition. This technique is applicable for navigation in an unlimited size of indoor space. The structure of the landmarks and the recognition method are introduced. And 2 rigid rules are also used to ensure the correctness of the recognition. Experimental results prove that the method is useful.

3D Map Generation System for Indoor Autonomous Navigation (실내 자율 주행을 위한 3D Map 생성 시스템)

  • Moon, SungTae;Han, Sang-Hyuck;Eom, Wesub;Kim, Youn-Kyu
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.140-148
    • /
    • 2012
  • For autonomous navigation, map, pose tracking, and finding the shortest path are required. Because there is no GPS signal in indoor environment, the current position should be recognized in the 3D map by using image processing or something. In this paper, we explain 3D map creation technology by using depth camera like Kinect and pose tracking in 3D map by using 2D image taking from camera. In addition, the mechanism of avoiding obstacles is discussed.

Mobile Robot Exploration in Indoor Environment Using Topological Structure with Invisible Barcodes

  • Huh, Jin-Wook;Chung, Woong-Sik;Nam, Sang-Yep;Chung, Wan-Kyun
    • ETRI Journal
    • /
    • v.29 no.2
    • /
    • pp.189-200
    • /
    • 2007
  • This paper addresses the localization and navigation problem in the movement of service robots by using invisible two dimensional barcodes on the floor. Compared with other methods using natural or artificial landmarks, the proposed localization method has great advantages in cost and appearance since the location of the robot is perfectly known using the barcode information after mapping is finished. We also propose a navigation algorithm which uses a topological structure. For the topological information, we define nodes and edges which are suitable for indoor navigation, especially for large area having multiple rooms, many walls, and many static obstacles. The proposed algorithm also has the advantage that errors which occur in each node are mutually independent and can be compensated exactly after some navigation using barcodes. Simulation and experimental results were performed to verify the algorithm in the barcode environment, showing excellent performance results. After mapping, it is also possible to solve the kidnapped robot problem and to generate paths using topological information.

  • PDF

A Vector-based Azimuth Algorithm using Indoor-Positioning Systems for Mobile Nodes (이동노드의 실내위치파악 시스템을 통한 벡터기반 상대방위각 알고리즘)

  • Son, Joo-Young
    • Journal of Navigation and Port Research
    • /
    • v.38 no.5
    • /
    • pp.457-462
    • /
    • 2014
  • Indoor-positioning systems are useful to various applications. Navigation system is one of the most popular applications, which needs the information of directions of nodes' movements. Specifically the applications should get the information in real-time to properly show the current moving position of a node. In this paper, simple vector-based algorithms are proposed to compute amount and direction of changes of azimuth of mobile nodes' heading directions using existing indoor positioning systems in indoor environments where azimuth sensors do not work properly. Previous algorithms calculate the azimuth changes by too many steps of topology-based formula. The algorithms proposed in this paper get the amount of changes of azimuth by simple formula based on vector, and determine the direction of changes by the sign of value of simple formula based on the previous movement of nodes. The algorithms are much simpler and less error-prone than previous ones, and then they can detect changes in many location-based applications as well. The performance of the algorithms is proved logically and mathematically.

A Hybrid Positioning System for Indoor Navigation on Mobile Phones using Panoramic Images

  • Nguyen, Van Vinh;Lee, Jong-Weon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.3
    • /
    • pp.835-854
    • /
    • 2012
  • In this paper, we propose a novel positioning system for indoor navigation which helps a user navigate easily to desired destinations in an unfamiliar indoor environment using his mobile phone. The system requires only the user's mobile phone with its basic equipped sensors such as a camera and a compass. The system tracks user's positions and orientations using a vision-based approach that utilizes $360^{\circ}$ panoramic images captured in the environment. To improve the robustness of the vision-based method, we exploit a digital compass that is widely installed on modern mobile phones. This hybrid solution outperforms existing mobile phone positioning methods by reducing the error of position estimation to around 0.7 meters. In addition, to enable the proposed system working independently on mobile phone without the requirement of additional hardware or external infrastructure, we employ a modified version of a fast and robust feature matching scheme using Histogrammed Intensity Patch. The experiments show that the proposed positioning system achieves good performance while running on a mobile phone with a responding time of around 1 second.

A study on the virtual indoor Scene navigation

  • Kim, Yeong-Seok;Jho, Cheung-Woon;Yoon, Kyung-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.153.5-153
    • /
    • 2001
  • This paper presents a simple modeling system that constructs 3D models from an indoor cylindrical environment map using all of the available geometry of the interior structure such as vertical and horizontal lines and parallel and perpendicular planes. The indoor scene abstract model is created through this system and the navigation through the process of 3D reconstruction. This system first automatically detects the vanishing points in a cylindrical environment map from parallel lines and planes, and determines the indoor scene topology previously defined using this information. The determined topology enables he user intervention UI simply construct a 3D model by using the photogrammetry. The modeling system can be ...

  • PDF

Visual Positioning System based on Voxel Labeling using Object Simultaneous Localization And Mapping

  • Jung, Tae-Won;Kim, In-Seon;Jung, Kye-Dong
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.302-306
    • /
    • 2021
  • Indoor localization is one of the basic elements of Location-Based Service, such as indoor navigation, location-based precision marketing, spatial recognition of robotics, augmented reality, and mixed reality. We propose a Voxel Labeling-based visual positioning system using object simultaneous localization and mapping (SLAM). Our method is a method of determining a location through single image 3D cuboid object detection and object SLAM for indoor navigation, then mapping to create an indoor map, addressing it with voxels, and matching with a defined space. First, high-quality cuboids are created from sampling 2D bounding boxes and vanishing points for single image object detection. And after jointly optimizing the poses of cameras, objects, and points, it is a Visual Positioning System (VPS) through matching with the pose information of the object in the voxel database. Our method provided the spatial information needed to the user with improved location accuracy and direction estimation.

Global Ultrasonic System for Autonomous Navigation of Indoor Mobile Robots

  • Park, Seong-Hoon;Yi, Soo-Yeong;Jin, Sang-Yoon;Kim, Jin-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.846-851
    • /
    • 2004
  • In this paper, we propose a global ultrasonic system for the self-localization and autonomous navigation of indoor mobile robots. The ultrasonic sensor is regarded as the most cost-effective ranging system among the possible alternatives, and it is widely used for general purpose, since it requires simple electronic drivers and has relatively high accuracy. The global ultrasonic system presented in this paper consists of four or more ultrasonic generators fixed at reference positions in the global coordinates of an indoor environment and two receivers mounted on the mobile robots. By using the RF (Radio Frequency) modules added to the ultrasonic sensors, the robot is able to control the ultrasonic generation and to obtain the critical distances from the reference positions, which are required in order to localize is position in the global coordinates. A kalman filter algorithm designed for the self-localization using the global ultrasonic system and the experimental results of the autonomous navigation are presented in this paper.

  • PDF

Self Localization of Mobile Robot Using UHF RFID Landmark

  • Kwon, Hyouk-Gil;Kim, Min-Sik;Ryu, Je-Goon;Shim, Hyeon-Min;Lee, Eung-Hyuk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1606-1611
    • /
    • 2005
  • The goal of this paper is to develop a self localization of mobile robot using UHF RFID landmark. We present landmark, a location sensing archetype system that uses UHF Radio Frequency Identification (UHF RFID) technology for locating objects inside buildings. The major advantage of landmark is that it improves the overall accuracy of locating objects by utilizing the concept of reference tags. Based on experimental analysis, we demonstrate that passive UHF RFID is a viable and cost-effective candidate for indoor location sensing. We conduct a series of experiments to evaluate performance of the positioning of the landmark System. In the standard setup, we place RF Reader which has two antennas and 25 tags in our lab. This research uses the assumption-based coordinates (ABC) algorithm[3] for determining the localization of robot. Also, we show how Radio Frequency Identification (UHF RFID) can be used in robot-assisted indoor navigation for the visually impaired. The experiments illustrate that passive UHF RFID tags can act as reliable landmark that trigger local navigation behaviors to achieve global navigation objectives.

  • PDF