• Title/Summary/Keyword: Indoor mobile robot

Search Result 292, Processing Time 0.028 seconds

A Navigation System for a Patrol Robot in Indoor Environments (실내 환경에서의 경비로봇용 주행시스템)

  • Choi, Byoung-Wook;Lee, Young-Min;Park, Jeong-Ho;Shin, Dong-Kwan
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.2
    • /
    • pp.117-124
    • /
    • 2006
  • In this paper, we develope the navigation system for patrol robots in indoor environment. The proposed system consists of PDA map modelling, a localization algorithm based on a global position sensor and an automatic charging station. For the practical use in security system, the PDA is used to build object map on the given indoor map. And the builded map is downloaded to the mobile robot and used in path planning. The global path planning is performed with a localization sensor and the downloaded map. As a main controller, we use PXA270 based hardware platform in which embedded linux 2.6 is developed. Data handling for various sensors and the localization algorithm are performed in the linux platform. Also, we implemented a local path planning algorithm for object avoidance with ultra sonar sensors. Finally, for the automatic charging, we use an infrared ray system and develop a docking algorithm. The navigation system is experimented with the two-wheeled mobile robot using North-Star localization system.

  • PDF

Mobile Robot for Indoor Air Quality Monitoring (이동형 실내 공기질 측정 로봇)

  • Lee, So-Hwa;Koh, Dong-Jin;Kim, Na-Bin;Park, Eun-Seo;Jeon, Dong-Ryeol;Bong, Jae Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.3
    • /
    • pp.537-542
    • /
    • 2022
  • There is a limit to the current indoor air quality (IAQ) monitoring method using fixed sensors and devices. A mobile robot for IAQ monitoring was developed by mounting IAQ monitoring sensors on a small multi-legged robot to minimize vibration and protect the sensors from vibration while robot moves. The developed mobile robot used a simple gait mechanism to enable the robot to move forward, backward, and turns only with the combination of forward and reverse rotation of the two DC motors. Due to the simple gait mechanism, not only IAQ data measurements but also gait motion control were processed using a single Arduino board. Because the mobile robot has small number of electronic components and low power consumption, a relatively low-capacity battery was mounted on the robot to reduce the weight of the battery. The weight of mobile robot is 1.4kg including links, various IAQ sensors, motors, and battery. The gait and turning speed of the mobile robot was measured at 3.75 cm/sec and 14.13 rad/sec. The maximum height where the robot leg could reach was 33 mm, but the mobile robot was able to overcome the bumps up to 24 mm.

Simultaneous Localization and Mapping of Mobile Robot using Digital Magnetic Compass and Ultrasonic Sensors (전자 나침반과 초음파 센서를 이용한 이동 로봇의 Simultaneous Localization and Mapping)

  • Kim, Ho-Duck;Seo, Sang-Wook;Jang, In-Hun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.4
    • /
    • pp.506-510
    • /
    • 2007
  • Digital Magnetic Compass(DMC) has a robust feature against interference in the indoor environment better than compass which is easily disturbed by electromagnetic sources or large ferromagnetic structures. Ultrasonic Sensors are cheap and can give relatively accurate range readings. So they ate used in Simultaneous Localization and Mapping(SLAM). In this paper, we study the Simultaneous Localization and Mapping(SLAM) of mobile robot in the indoor environment with Digital Magnetic Compass and Ultrasonic Sensors. Autonomous mobile robot is aware of robot's moving direction and position by the restricted data. Also robot must localize as quickly as possible. And in the moving of the mobile robot, the mobile robot must acquire a map of its environment. As application for the Simultaneous Localization and Mapping(SLAM) on the autonomous mobile robot system, robot can find the localization and the mapping and can solve the Kid Napping situation for itself. Especially, in the Kid Napping situation, autonomous mobile robot use Ultrasonic sensors and Digital Magnetic Compass(DMC)'s data for moving. The robot is aware of accurate location By using Digital Magnetic Compass(DMC).

Development of an Indoor Networked Security Robot System (네트워크 기반 실내 감시 로봇 시스템 개발)

  • Park, Keun Young;Heo, Guen Sub;Lee, Sang Ryong;Lee, Choon Young
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.3
    • /
    • pp.136-142
    • /
    • 2008
  • Mobile robots can offer services like intelligent monitoring in an indoor environment using network connection with remote users. In this paper, we designed and developed a networked security robot system with various sensors, such as flame detector, gas detector, sound monitoring module, and temperature sensor, etc. The robot can be accessed through a web service and the user can check the status of the environment. Using ADAMS software, we defined the motor specification for a worst-case condition of climbing over a obstacle. We applied the robot system in monitoring office condition.

  • PDF

Indoor Moving and Implementation of a Mobile Robot Using Hall Sensor and Dijkstra Algorithm (홀 센서와 Dijkstra 알고리즘을 이용한 로봇의 실내 주행과 구현)

  • Choi, Jung-Hae;Choi, Byung-Jae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.3
    • /
    • pp.151-156
    • /
    • 2019
  • According to recent advances in technology, major robot technologies that have been developed and commercialized for industrial use are being applied to various fields in our everyday life such as guide robots and cleaning robots. Among them, the navigation based on the self localization has become an essential element technology of the robot. In the case of indoor environment, many high-priced sensors are used, which makes it difficult to activate the robot industry. In this paper, we propose a robotic platform and a moving algorithm that can travel by using Dijkstra algorithm. The proposed system can find a short route to the destination with its own position. Also, its performance is discussed through the experimentation of an actual robot.

Simulation of Mobile Robot Navigation based on Multi-Sensor Data Fusion by Probabilistic Model

  • Jin, Tae-seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.4
    • /
    • pp.167-174
    • /
    • 2018
  • Presently, the exploration of an unknown environment is an important task for the development of mobile robots and mobile robots are navigated by means of a number of methods, using navigating systems such as the sonar-sensing system or the visual-sensing system. To fully utilize the strengths of both the sonar and visual sensing systems, In mobile robotics, multi-sensor data fusion(MSDF) became useful method for navigation and collision avoiding. Moreover, their applicability for map building and navigation has exploited in recent years. In this paper, as the preliminary step for developing a multi-purpose autonomous carrier mobile robot to transport trolleys or heavy goods and serve as robotic nursing assistant in hospital wards. The aim of this paper is to present the use of multi-sensor data fusion such as ultrasonic sensor, IR sensor for mobile robot to navigate, and presents an experimental mobile robot designed to operate autonomously within indoor environments. Simulation results with a mobile robot will demonstrate the effectiveness of the discussed methods.

A Study on Development of a Reconfigurable Mobile Robot and Dead-Reckoning Using Extended Kalman Filter (가변구조형 주행로봇 개발 및 확장형 칼만필터를 이용한 추측 항법에 대한 연구)

  • Kang, Bong-Soo;Yeo, Gee-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.5
    • /
    • pp.455-462
    • /
    • 2009
  • This paper presents design concepts of a reconfigurable mobile robot for both of indoor and outdoor applications. A linkage mechanism and wheel-in-motors give the proposed mobile robot various driving modes in maneuver and good adaptability to irregular surface. Since the mobile robot receives multiple sensor signals from odometers and an orientation sensor, states related to the position and the orientation of the mobile robot are optimally estimated by an extended Kalman filter. Simulations and experimental results show that the performance of dead reckoning on estimating the pose of a mobile robot can be improved remarkably by the optimal state observer.

Path Planning based on Ray-casting in Indoor Environments for Safe Navigation of a Mobile Robot (이동로봇의 안전한 주행을 위한 광선투사법 기반의 실내 경로계획)

  • Kim, Jong-Won;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.4
    • /
    • pp.302-308
    • /
    • 2010
  • A gradient method can provide a global optimal path in indoor environments. However, the optimal path can be often generated in narrow areas despite a sufficient wide area which lead to safe navigation. This paper presents a novel approach to path planning for safe navigation of a mobile robot. The proposed algorithm extracts empty regions using a ray-casting method and then generates temporary waypoints in wider regions in order to reach the goal fast and safely. The experimental results show that the proposed method can generate paths in the wide regions in most cases and the robot can reach the goal safely at high speeds.

Localization of a Mobile Robot Using Multiple Ceiling Lights (여러 개의 조명등을 이용한 이동 로봇의 위치 추정)

  • Han, Yeon-Ju;Park, Tae-Hyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.4
    • /
    • pp.379-384
    • /
    • 2013
  • We propose a new global positioning method for the indoor mobile robots. The multiple indoor lights fixed in ceiling are used as the landmarks of positioning system. The ceiling images are acquired by the fisheye lens camera mounted on the moving robot. The position and orientation of the lights are extracted by binarization and labeling techniques. Also the boundary lines between ceiling and walls are extracted to identify the order of each light. The robot position is then calculated from the extracted position and known position of the lights. The proposed system can increase the accuracy and reduce the computation time comparing with the other positioning methods using natural landmark. Experimental results are presented to show the performance of the method.

Research to improve the performance of self localization of mobile robot utilizing video information of CCTV (CCTV 영상 정보를 활용한 이동 로봇의 자기 위치 추정 성능 향상을 위한 연구)

  • Park, Jong-Ho;Jeon, Young-Pil;Ryu, Ji-Hyoung;Yu, Dong-Hyun;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6420-6426
    • /
    • 2013
  • The indoor areas for the commercial use of automatic monitoring systems of mobile robot localization improves the cognitive abilities and the needs of the environment with this emerging and existing mobile robot localization, and object recognition methods commonly around its great sensor are leveraged. On the other hand, there is a difficulty with a problem-solving self-location estimation in indoor mobile robots using only the sensors of the robot. Therefore, in this paper, a self-position estimation method for an enhanced and effective mobile robot is proposed using a marker and CCTV video that is already installed in the building. In particular, after recognizing a square mobile robot and the object from the input image, and the vertices were confirmed, the feature points of the marker were found, and marker recognition was then performed. First, a self-position estimation of the mobile robot was performed according to the relationship of the image marker and a coordinate transformation was performed. In particular, the estimation was converted to an absolute coordinate value based on CCTV information, such as robots and obstacles. The study results can be used to make a convenient self-position estimation of the robot in the indoor areas to verify the self-position estimation method of the mobile robot. In addition, experimental operation was performed based on the actual robot system.