• 제목/요약/키워드: Indoor materials

검색결과 603건 처리시간 0.029초

Recent Advances in Titania-based Composites for Photocatalytic Degradation of Indoor Volatile Organic Compounds

  • Raza, Nadeem;Kim, Ki-Hyun;Agbe, Henry;Kailasa, Suresh Kumar;Szulejko, Jan E.;Brown, Richard J.C.
    • Asian Journal of Atmospheric Environment
    • /
    • 제11권4호
    • /
    • pp.217-234
    • /
    • 2017
  • Indoor air pollutants can cause severe health problems, specifically in terms of toxicological impacts on human. Every day, a complex mixture of many air pollutants is emitted from various sources and subject to atmospheric processes that can create varied classes of pollutants such as carboxylic acids, aldehydes, ketones, peroxyacetyl nitrate, and hydrocarbons. To adhere to indoor air quality standards, a number of techniques such as photocatalytic oxidation of various volatile organic compounds (VOCs) have been employed. Among these techniques, titania ($TiO_2$) based photocatalytic reactions have proven to be the best benchmark standard approach in the field of environmental applications. Over the last 45 years, $TiO_2$-based photocatalytic reactions have been explored for the degradation of various pollutants. This review discusses the indoor air quality profile, types of indoor pollutants, available indoor air cleaning approaches, and performance of $TiO_2$-based catalysts. Finally, we have presented the perspectives on the progress of $TiO_2$ induced photocatalysis for the purification of indoor air.

인천지역 공공 노인복지시설의 건축조건과 실내공기질에 대한 실태조사 및 분석 (An Investigation and Analysis into the Architectural Conditions and Indoor Air Quality of Senior Citizens Public Welfare Institution in Incheon)

  • 강승아;신성식;김용식
    • KIEAE Journal
    • /
    • 제9권2호
    • /
    • pp.59-64
    • /
    • 2009
  • The senior citizens population and welfare institution for them is increased. The senior citizens in welfare institution spend a long time in indoor and their health is greatly affected by the indoor environment. Therefore, the indoor environment of senior citizens welfare institution is very important. This study presents some primary data based on the survey of architectural conditions and the measurements of indoor air quality for senior citizens welfare institution. According to characteristic of region, six of Incheon Area's senior citizens public welfare institution are selected. An investigation and analysis into architectural conditions and indoor air quality including temperature, humidity, CO, $CO_2$, PM10, HCHO, TVOC are conducted. The temperature, humidity and $CO_2$ concentration is some high. The HCHO concentration is very high. The indoor flooring and furniture materials highly impacts on the concentration of HCHO and TVOC.

전통온돌난방의 실내 온열환경 쾌적감 평가에 관한 연구 (A Study on the Indoor Thermal Comfort of the House with Ondol Heating System of Korean Traditional Housing)

  • 강상우;전지현;국찬
    • 한국주거학회논문집
    • /
    • 제18권4호
    • /
    • pp.1-7
    • /
    • 2007
  • The principle of Korean Traditional Housing was to be harmonized with the nature with shapes according to regional climate and materials easily available from the region. These environmentally friendly characteristics protected indoor environment from climate changes. The characteristics of Korean traditional housing to control indoor environment would be very useful for contemporary housing in that current issues, improving housing amenity and wellbeing, had basic goals same with what Korean Traditional Housing had. Though it could be found characteristics of indoor thermal environment heated by Ondol Heating System, analyses of evaluation made by occupants of the rooms were insufficient because most of the studies had been focused on the measurement of indoor thermal factors. Thus, with an evaluation of occupants for the indoor thermal comfort and an estimation of discomfort derived from the result of vertical temperature distribution, it was studied whether the agreeable indoor range of rooms, of which was Jeonju Hanok Living Experience Center, heated by Ondol Heating System corresponded to the agreeable indoor range presented in references.

활성백토를 흡착재로 활용한 경화체의 실내 공기 개선 평가 (Evaluation of Indoor Air Improvement of Matrix Using Activated clay as Adsorption Material)

  • 정현수;김연호;이상수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 봄 학술논문 발표대회
    • /
    • pp.189-190
    • /
    • 2020
  • The importance of indoor air quality management has recently been highlighted due to environmental problems such as indoor air pollution. Among indoor air pollutants, carbon dioxide occurs in cooking, heating, burning, and causes forgetfulness, dementia and amnesia. Radon, which occurs in building materials, soil and ground, is a type 1 carcinogen that causes lung cancer in the body through breathing. These substances can be released from the room through ventilation, but there is a limit to reducing the amount of indoor activity due to reduced ventilation conditions due to increased indoor activity time. However, these substances can be removed from the gas by adsorption. The purpose of this study was to identify the properties of granular active and powdered active white soil and mix them to make cement-based active white soil adsorbent matrix for carbon dioxide, fine dust and radon gas adsorption, and to evaluate indoor air improvements according to the mixing scale. The results of the experiment showed that active carbon dioxide adsorption performance increased for carbon dioxide and radon as the exchange rate increased through physical adsorption. In particular, the higher the replacement rate of the granular active bag, the better adsorption performance was shown.

  • PDF

소형챔버법을 이용한 건축자재 중 벽지, 페인트 및 접착제의 VOCs 방출특성 평가 (Assessment of VOCs Emission Characteristics from Building Materials such as Wall Paper, Paints, and Adhesives Using Small Chamber Method)

  • 이석조;장성기;조용성;정경미;정기호
    • 한국대기환경학회지
    • /
    • 제21권2호
    • /
    • pp.191-204
    • /
    • 2005
  • Building and furnishing materials and consumer product are important sources of volatile organic compounds(VOCs) and other aldehydes in the indoor environment. Some available evidence indicates that VOCs can cause adverse health effects to the building occupants and contribute to some of the symptoms of what we call, 'Sick House Syndrome' in Korea. The aims of this study were to evaluate the efficiency of emission system and to investigate comparison of the emission characteristics of different building materials such as wall-papers, paints, and adhesives. The emission of VOCs from building materials were determined in the small chambers defining the temperature, relative humidity, and ventilation rate in this study. VOCs were sampled for 20 minutes using Tenax-TA tubes and analysed by GC-MS with thermal desorption. The stability of conditions for temperature and relative humidity in this small chamber system showed that the fluctuation of temperature was between 25.4$\pm$0.3$^{\circ}C$ and that of relative humidity was 50.2$\pm$0.6$\%$ under the airflow rate of 167 mL/min. The emission tests from building materials resulted in TVOC emission rates of 0.011 $\~$ 3.108 mg/m$^{2}$h after 7 days. The general wall-papers emitted toluene abundantly and the natural wall-papers mainly emitted n-butanol and a minor amount of alkanes compound such as n -tetradecane. The remainder consisted of toluene, m,p -xylene, and styrene. The paints mainly emitted toluene and the adhesives mainly emitted chloroform as well as toluene. As a result, this study is expected to suggest meaningful data for future studies in exposure control through selecting healthy building materials and for the establishment of guidelines for various building materials in Korea.

화염 분무 열분해법으로 합성된 Cr-Co3O4 나노입자 자일렌 가스센서 (Xylene Sensor Using Cr-doped Cr-Co3O4 Nanoparticles Prepared by Flame Spray Pyrolysis)

  • 정성용;조영무;강윤찬;이종흔
    • 센서학회지
    • /
    • 제29권2호
    • /
    • pp.112-117
    • /
    • 2020
  • Xylene is a hazardous volatile organic compound that should be precisely measured to monitor indoor air quality. However, the selective and sensitive detection of ppm-level xylene using oxide-semiconductor gas sensors remains a challenge. In this study, pure and Cr-doped Co3O4 nanoparticles (NPs) were prepared using flame spray pyrolysis, and their gas-sensing characteristics to 5-ppm xylene at 250 ℃ were investigated. The 4 at% Cr-doped Co3O4 NPs exhibited a high gas response to 5-ppm xylene (resistance ratio to gas and air = 39.1) and negligible cross-responses to other representative and ubiquitous indoor pollutants such as ethanol, benzene, formaldehyde, carbon monoxide, and ammonia. In this paper, the enhancement of the gas response and selectivity of Co3O4 NPs to xylene by Cr doping was discussed in relation to the catalytic promotion of the gas-sensing reaction. This sensor can be used to monitor indoor xylene.

건축재료로부터 방출되는 라돈방사능 감소를 위한 흑탄과 활성탄 효과 (Effect of Black Charcoal and Activated Carbon for Reduction of Radon Radioactivity that Emitted from Building Materials)

  • 조윤민;이화형
    • 한국가구학회지
    • /
    • 제22권1호
    • /
    • pp.13-17
    • /
    • 2011
  • Recently, interest in indoor air quality is increasing. Especially, radon radioactivity among the indoor air is a well-known risk factor for lung cancer because of ionizing radiation in the form of ${\alpha}$-particles. This study was carried out to investigate effect of black charcoal and activated carbon for reduction of radon radiation that emitted from building materials. Black charcoal and activated carbon were used as a barrier which was against the infiltration of radon. The source of radon was gypsum board. Two types of charcoal barrier were powder- and board-type with 5 mm, 10 mm thickness respectively. The method for this determination is evaluated radon concentration in chamber. The measurements were performed with radon detector, SARAD3120. Results of this study are as following: Black charcoal and activated carbon confirmed the highly efficient barrier. Radon concentration was reduced from 72% to 85% as compared the control chamber. Radon reduction capability, however, was no difference as barrier's types. Results obtained in ventilation condition, radon concentration shows 5.93 pCi/L on average in the closed condition and shows 2.69 pCi/L in the opened condition.

  • PDF

세피올라이트를 활용한 시멘트 경화체의 미세먼지 흡착 특성 (Fine Dust Adsorption of Cement Matrix Using Sepiolite )

  • 전은영;이상수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 가을학술발표대회논문집
    • /
    • pp.71-72
    • /
    • 2023
  • As industrialization and urbanization accelerate, environmental issues have moved from local concerns to global issues. Among them, air pollution is the most important issue. Modern people spend more than 88% of their day indoors, but the concentration of fine dust and pollutants flowing indoors is increasing. The indoor environment has its own complexity, and various substances used indoors, such as building materials, furniture, electronics, and cleaning agents, emit chemical substances and cause various diseases. Therefore, when selecting building materials and interior finishing materials, the pollutant emission and adsorption capacity must be greatly considered. These considerations will ensure the construction of a sustainable future environment and a healthy life within that environment. Therefore, in order to reduce the generation of indoor air pollutants, this study aims to examine the fine dust adsorption properties of cement hardening materials using sepiolite, which has a porous structure and high absorption power among clay minerals. As a result of the experiment, it was found that the concentration of fine dust decreased as the addition rate of sepiolite increased. It is believed that the fine dust concentration was reduced due to the high porosity due to the microfibrous structure and large specific surface area of sepiolite, which has a porous structure among clay minerals. It is believed that these experimental results can be used as basic research for future use of sepiolite as a construction material.

  • PDF

군 내무실의 실내공기질 개선을 위한 환기량 산정에 관한 연구 (A Study on the Calculation of Ventilation Rate for the Improvement of Indoor Air Quality on the Barracks)

  • 최정민;유진상;정영일
    • 설비공학논문집
    • /
    • 제17권11호
    • /
    • pp.1043-1049
    • /
    • 2005
  • The purpose of this study is to improve indoor air quality of the barracks which have been changed from floor-type living barracks to bed-type living barracks since 2003. Therefore, the ventilation rates of newly constructed two type barracks were simulated with the various building materials including VOCs and HCHO components. And indoor air quality of two type living barracks was measured by the field experiments. With these steps, the measures for upgrading indoor air quality depending on building material types and ventilation rate are suggested.