• Title/Summary/Keyword: Indoor lighting

Search Result 256, Processing Time 0.028 seconds

Study on Scalable Video Coding Signals Transmission Scheme using LED-ID System (LED-ID 시스템을 이용한 SVC 신호의 전송 기법에 관한 연구)

  • Lee, Kyu-Jin;Cha, Dong-Ho;Hwang, Sun-Ha;Lee, Kye-San
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.10B
    • /
    • pp.1258-1267
    • /
    • 2011
  • In this paper, using the indoor LED-ID communication system have researched for how to transmit video signals. In LED-ID communications use the LEDs for lighting features at the same time communication is an effective way to implement. This proposed system using Visible light(RGB) as way to transmit signals, depends on the mixture RGB, which decided the color of light, moreover, each things determined their performance. However, if the video signal were fixed allocated RGB to transmit such as the original system, the importance of the each signals a different occur the limit on the quality of the video than SVC signals. In order to solve this problem in this paper, according to the RGB mixture ratios analyze the performance for the White LED, which analyzed based on allocating the SVC signal by transmitting to improve the quality of the video was about how researched.

Two Kinds of Hybrid Localization System Design Techniques Based on LED IT (LED IT 기반의 두 가지 하이브리드 측위 시스템 설계 기법)

  • Lee, Yong Up;Kang, Yeongsik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.2
    • /
    • pp.155-164
    • /
    • 2013
  • Two design techniques for more accurate and more convenient hybrid positioning system with visible light communication (VLC) and ad-hoc wireless network infrastructure are proposed, in order to overcome the problems of high estimation error, high cost, and limited service range of the conventional positioning techniques. First method is based on a non-carrier VLC based hybrid positioning technique for applications involving of low data rate optical sensing and narrow-range visible light reception from transmitter, and long-range positioning. The second method uses a 4 MHz carrier VLC-based hybrid positioning technique for a high data rate optical sensing and wide-range visible light receiving from transmitter, and mid-range positioning applications. In indoor environments with obstacles where there are long-range 7731.4cm and mid-range 2368cm distances between an observer and a target respectively, the hybrid positioning developed with two design techniques are tested, and the proposed system is verified and analyzed in this paper.

Comparison assessment of semi-transparent solar cell for BIPV windows (반투과형 태양전지를 이용한 창호형 BIPV 건물의 환경성능 분석)

  • Chung, Min Hee
    • Land and Housing Review
    • /
    • v.11 no.1
    • /
    • pp.87-94
    • /
    • 2020
  • To implement the planning of zero-energy buildings, their energy performance must be improved, and renewable energy applications must also be included. To accelerate the use of renewable energies in such buildings, BIPVs should be actively used in windows and on roofs. Window-type BIPVs are being developed in various forms depending on the size, composition, area ratio of the window, specification of glass, and so on. To analyze the applicability of various solar cells as window-type BIPVs, in this study, we evaluated their applicability, at the current development level, by analyzing the indoor illuminance, heat gain and heat loss; the cooling, heating, and lighting energy levels; and the generation performance of the various solar cells. To enhance the future applicability of window type BIPV, we analyze the overall energy performance of the building, according to changes in visible light transmittance and generation efficiency. The main research results are as follows. The area ratios above the standard illuminance, based on the window type and according to the VLT, were in order of low-e glazing, a-Si window, DSSC window, and c-Si window. The heat gain of the semi-transparent solar cell winodw was remarkably low. The energy consumption of buildings was highest in the order of c-Si window, DSSC window, a-Si window, and clear low-e window. However, in the case of including the power generation performance of the solar cell, the energy consumption was found to be high in order of DSSC window, c-Si window, a-Si window, and clear low-e window. In the future, if a window-type BIPV is developed, we believe that improvement in power generation performance and improvement in visible light transmittance will be needed.

A Study on the Comparison of Building Data Using 3D Scanning (3D 스캐닝 활용 건축물 데이터 비교에 관한 연구)

  • Hwang, Byeong Yeon;Park, Jong Ki;Lee, Tae Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.50-56
    • /
    • 2021
  • This study examines 3D scanning and how it is used in the construction field. 3D scanning technology was applied to a real space and compared with drawings in the planning and construction stages. 3D scanning technology has been widely applied in the field of construction, design, construction, and safety. The results of comparing 3D scanning data with drawings are as follows. First, the external shape and dimensions do not show much difference. Second, the internal shape and dimensions are different. Third, indoor lighting layouts are different in all buildings. 3D scanning should be an essential element in the construction stage before completion and should be used for supervision tasks such as material management, improving the efficiency of construction, and safety management through continuous 3D scanning using automation and robots. Follow-up studies in the field of architecture, such as BIM and process management, will be needed.

Developing a BIM-Based Methodology Framework for Sustainability Analysis of Low Carbon High-Rise Buildings

  • Gan, Vincent J.L.;Li, Nan;Tse, K.T.;Chan, C.M.;Lo, Irene M.C.;Cheng, Jack C.P.
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.14-23
    • /
    • 2017
  • In high-density high-rise cities such as Hong Kong, buildings account for nearly 90% of energy consumption and 61% of carbon emissions. Therefore, it is important to study the design of buildings, especially high-rise buildings, to achieve lower carbon emissions in the city. The carbon emissions of a building consist of embodied carbon from the production of construction materials and operational carbon from energy consumption during daily operation (e.g., air-conditioning and lighting). An integrated analysis of both types of carbon emissions can strengthen the design of low carbon buildings, but most of the previous studies concentrated mainly on either embodied or operational carbon. Therefore, the primary objective of this study is to develop a holistic methodology framework considering both embodied and operational carbon, in order to enhance the sustainable design of low carbon high-rise buildings. The framework will be based on the building information modeling (BIM) technology because BIM can be integrated with simulation systems and digital models of different disciplines, thereby enabling a holistic design and assessment of low carbon buildings. Structural analysis program is first coupled with BIM to validate the structural performance of a building design. The amounts of construction materials and embodied carbon are then quantified by a BIM-based program using the Dynamo programming interface. Operational carbon is quantified by energy simulation software based on the green building extensible Markup Language (gbXML) file from BIM. Computational fluid dynamics (CFD) will be applied to analyze the ambient wind effect on indoor temperature and operational carbon. The BIM-based framework serves as a decision support tool to compare and explore more environmentally-sustainable design options to help reduce the carbon emissions in buildings.

  • PDF

Improving the Cyclic Stability of Electrochromic Mirrors Composed of Gel Electrolyte (겔 전해질로 구성된 전기변색 거울의 내구성 향상)

  • Ji-Hyeong Lee;Kwang-Mo Kang;Sang Bum Lee;Yoon-Chae Nah
    • Korean Journal of Materials Research
    • /
    • v.34 no.8
    • /
    • pp.400-407
    • /
    • 2024
  • The reversible metal electrodeposition (RME) process is used to prepare electrochromic mirrors with reflective-transparent optical states, by depositing metal particles on transparent conductive substrates. These RME based devices can be used in smart windows to regulate indoor temperatures and light levels, serving dual purposes as lighting elements. Commercialization efforts are focused on achieving large-scale production, long-term durability, and a memory effect that maintains coloration without applied voltage. Enhancing durability has received particular attention, leading to the development of electrochromic mirrors that employ gel electrolytes, which are expected to reduce electrolyte leakage and improve mechanical stability compared to traditional liquid electrolyte devices. The gel electrolytes offer the additional advantage of various colors, by controlling the metal particle size and enabling smoother, denser formations. In this study, we investigated improving the durability of RME devices by adding polyvinyl butyral (PVB) to the liquid electrolyte and optimizing the concentration of PVB. Incorporating 10 % PVB resulted in excellent interfacial properties and superior electrochromic stability, with 92.6 % retention after 1,000 cycles.

Effects of Indoor Light Intensity on the Growth Characteristics of $Distylium$ $racemosum$, $Osmanthus$ $heterophyllus$ and $Damnacanthus$ $indicus$ (실내 광조건이 조록나무, 구골나무 및 호자나무의 생육에 미치는 영향)

  • Song, Eun-Young;Kim, Seong-Cheol;Chun, Seung-Jong;Lim, Chan-Kyu;Kim, Mi-Sun;Kim, Chun-Hwan;Ro, Na-Young
    • Journal of Bio-Environment Control
    • /
    • v.21 no.1
    • /
    • pp.66-73
    • /
    • 2012
  • This study was conducted to develope new indoor plants and to investigate the effects of light intensity on the growth of $Distylium$ $racemosum$, $Osmanthus$ $heterophyllus$ and $Damnacanthus$ $indicus$ under 100 lux, 1,000 lux and 2,500 lux fluorescent lighting for six months in the environment-controlled growth chambers. 1. $Distylium$ $racemosum$ : Most of $Distylium$ $racemosum$ under 100 lux light intensity were blighted in two months, whereas it was 100% of survival under 1,000 lux and 2,500 lux after six months. Plant height, number of leaf, leaf width and leaf length became higher as light intensity increased. The plants maintained under 2,500 lux showed the greatest plant height and leaf number. 2. $Osmanthus$ $heterophyllus$ : $Osmanthus$ $heterophyllus$ under 100 lux light intensity were blighted in two months, whereas it was 100% of survival under 1,000 lux and 2,500 lux after six months. However, under 1,000 lux, it paused plant height and was not increased in leaf number any more. A plant growth status showed the highest value under 2,500 lux in all conditions. 3. $Damnacanthus$ $indicus$ : $Damnacanthus$ $indicus$ was defoliated and blighted under 100 lux light intensity in two months, whereas it was grown properly with 1,000 lux or above. However, the growth under 2,500 lux of $Damnacanthus$ $indicus$ was superior to other treatments. But, $Damnacanthus$ $indicus$ under 1,000 lux after 6 months was more favorable chlorophyll contents, leaf length and leaf width than 2,500 lux. As increasing slightly of chlorophyll contents and leaf growth under 1,000 lux, $Damnacanthus$ $indicus$ could be utilized highly to the indoor ornamental plant.

Study on the Indoor Environment and Status of Facilities and Equipments of Home Economics Practice Rooms of Middle Schools in Jeju Special Self-Governing Province (제주특별자치도 중학교 가정실의 실내환경 및 시설.설비 현황에 관한 연구)

  • Park, Min-Hye;Kim, Bong-Ae
    • Journal of Korean Home Economics Education Association
    • /
    • v.19 no.3
    • /
    • pp.61-76
    • /
    • 2007
  • The purpose of the study is to identify and understand problems existing in the middle school home economics practice rooms in Jeju Special Self-Governing Province. The findings are based on the examination and the analysis of the indoor environment and the condition of the facilities and equipment. Study method employs on-site research and a survey. The on-site research was conducted about temperature, humidity, intensity of illumination, and status of teaching instrument in 10 out of 41 middle schools in Jeju Special Self-Governing Province from August 16 to September 30, 2006. Meanwhile, the survey was implemented by mail for 95 teachers in charge of manual training and home economics education in 41 middle schools in Jeju from November 1 to 23, 2005. 64 questionnaires out of total 95 were collected, including those collected during the period of on-site research. Finally, 61 questionnaires which were effective among the answered ones were used for analysis. Collected materials were analyzed with the SPSS Win.12.0 program for frequency, percentile analysis. In conclusion, the study determines that the condition of the home economics practice rooms of the middle school in JSSGP in terms of temperature, humidity, lighting and ventilation is very inadequate. The structure of the practice room represents an inefficient work flow pattern. Further, the facilities and equipment are in a very poor condition because the facilities are old and the retention rate of teaching tools is low. Therefore, to address these problems, the study suggests that improvements on the facilities and equipment should be made and teaching tools should be replenished in accordance with the industry standard.

  • PDF

Photocatalyst characteristic of WO3 thin film with sputtering process (스퍼터링법에 의해 제작된 WO3 박막의 광분해 특성)

  • Lee, Boong-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.420-424
    • /
    • 2016
  • In this study, we developed photocatalytic technology to address the emerging serious problem of air pollution through indoor air cleaning. A single layer of $WO_3$ was prepared by using the dry process of general RF magnetron sputtering. At a base vacuum of $1.8{\times}10^{-6}$[Torr], the optical and electrical properties of the resulting thin films were examined for use as a transparent electrode as well as a photocatalyst. The single layer of $WO_3$ prepared at an RF power of 100 [W], a pressure of 7 [mTorr] and Ar and $O_2$ gas flow rates of 70 and 2 sccm, respectively, showed uniform and good optical transmittance of over 80% in the visible wavelength range from 380 [nm] to 780 [nm]. The optical catalyst characteristics of the $WO_3$ thin film were examined by investigating the optical absorbance and concentration variance in methylene blue, where the $WO_3$ thin film was immersed in the methylene blue. The catalytic characteristics improved with time. The concentration of methylene blue decreased to 80% after 5 hours, which confirms that the $WO_3$ thin film shows the characteristics of an optical catalyst. Using the reflector of a CCFL (cold cathode fluorescent lamp) and the lens of an LED (lighting emitting diode), it is possible to enhance the air cleaning effect of next-generation light sources.

Analysis Method for Damage Patterns of Low Voltage Switches for PL Judgment (PL 판정을 위한 저압용 스위치의 소손 패턴 해석기법)

  • Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.24 no.5
    • /
    • pp.136-141
    • /
    • 2010
  • The purpose of this study is to examine the structure and heat generation mechanism of low voltage switches used to turn on or off the power supply to an indoor lighting system and investigate how the fixtures and movable contacts of the switches are damaged depending on the types of energy sources in order to secure the judgment base for expected PL disputes. Based on the Korean Standard (KS) testing method for incombustibility, this study applied a general flame to the switch. In addition, current was supplied to the switch using the PCITS (Primary Current Injection Test System). The ambient temperature and humidity were maintained at $22{\pm}2^{\circ}C$ and 40~60% respectively while performing the test. It is thought that the switch generated heat due to a defective connection of the wire and clip, insulation deterioration and defective contact of the movable contact, etc. The surface of the switch damaged by the general flame was uniformly carbonized. When the flame source was removed, the fire on the switch was extinguished naturally. From the result obtained by disassembling the switch carbonized by the general flame, it could be seen that fixtures and movable contacts remained in comparatively good shape but the enclosure, clip support, movable contact, indicating lamp, etc. showed carbonization and discoloration. In the case of the switch damaged by overcurrent, the clip connecting the wires, clip support, etc. showed almost no trace of damage, but the fixtures, movable contact, indicating lamp, etc. were severely carbonized. That is, the sections with high contact resistance were intensively damaged and showed a damage pattern indicating that carbonization progressed from the inside to the outside. Therefore, it is possible to judge the initial energy source by analyzing the characteristics of the carbonization pattern and the metal fixtures of damaged switches.