• 제목/요약/키워드: Indoor inhalation

검색결과 52건 처리시간 0.027초

거주지의 지하수사용에서 유래한 벤젠의 흡입노출에 대한 동적약리학 모델의 불확실성 분석 (Uncertainty Analysis of a Pharmacokinetic Modeling for Inhalation Exposure of Benzene from the Use of Groundwater at Dwelling)

  • 김상준;이현호;박지연;이유진;유동한;양지원
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제9권1호
    • /
    • pp.28-38
    • /
    • 2004
  • 본 연구는 지하수로부터 유래한 벤젠이 실내공기에 휘발되어 호흡을 통하여 인체에 유입될때 각 장기에 분포하고 제거되는 것을 묘사하는 동적약리학 모델의 불확실성 및 중요도 분석의 결과를 제공하였다. 오염된 실내공기의 호흡을 통해 체내에 유입된 벤젠이 각 장기에 분포하는 비율과 농도를 모의하기 위해 기존의 동적약리학 모델을 적용하였으며 간에서의 분해대사를 포함하여 구성하였다. 본 연구는 동적약리학 모델의 각 장기의 혈류량, 분배계수, 분해상수, 부피 등과 같은 인자들에 대한 지식 및 측정의 부족에서 오는 고정된 단일 값의 사용이 야기하는 불확실성 문제에 대해 초점을 맞추었다. 이를 해결하기 위해서 동적약리학 모델과 불확실성 분석을 동시에 수행되었으며 앞으로 휘발성 유기화합물과 관련한 위해도 평가에서의 이해를 높일 수 있다고 생각된다.

목욕시 Chloroform에 대한 흡기 및 피부 접촉 노출 (Inhalation and Dermal Exposures to Chloroform while Bathing)

  • 조완근
    • 한국환경과학회지
    • /
    • 제7권3호
    • /
    • pp.301-310
    • /
    • 1998
  • Recently, bathes have been suspected to an Important source of indoor exposure to volatile organic compounds(VOCs). Two experiments were conducted to evaluate chloroform exposure and corresponding body burden by exposure routes while bathing. Another experiment was conducted to ekamine the chloro- form dose during dermal exposure and the chloroform decay In breath after dermal exposure. The chioroform dose was determined based on exhaled breath analysis. The ekamine breath concentration measured after normal baths (2.8 Vg/$m^3$) was approxidmately 13 tomes higher that measured prior to normal bathes (0.2 ug/$m^3$). Based on the means of the normalized post exposure chloroform breath concentration. the dermal exposure was estimated to contribute to 74% of total chloroform body burden while bathing. The Internal dose from bathing (Inhalation plus dermal) was comparable to the dose ostimated Srom dally water Ingestion. The rusk associated 10 a weekly, 30-min bath was estimated to be 1 x 10.5, while the rusk firom dally Ingestion of tap water was to be $0.5{\times}0^{-5} for 0.151 and 6.5{\times}10^{-5}$ for 2. 0 1. Chloroform breath concentration Increased gradually during the 60 minute dermal exposure. The breath decay after the dermal exposure showed two-phase mechanism, with early raped decay and the second slow decay. The mathematical model was developed to describe the relationship between water and air chloroform concentrations, with $R^2$ : 0.4 and p<0.02.

  • PDF

일개 실내수영장의 공기 중 염소 및 트리할로메탄의 노출평가 및 환기 효율 평가 (Assessment for Inhalation Exposure to Trihalomethanes (THMs) and Chroline and Efficiency of Ventilation for an Indoor Swimming Pool)

  • 박해동;박현희;신정아;김태호
    • 한국환경보건학회지
    • /
    • 제36권5호
    • /
    • pp.402-410
    • /
    • 2010
  • The objectives of this study were to evaluate the air quality surrounding an indoor swimming pool, to estimate the cancer risk based on the airborne exposure to trihalomethanes (THMs), and to examine the ventilation efficiency by Computational Fluid Dynamics (CFD). Chlorine and THMs were measured poolside, and in the staff room and reception area. The indoor swimming pool was modeled using the Airpak program, with ventilation drawings and actual survey data. Temperature, flow and mean age of the air were analyzed. Levels of chlorine poolside, and in the staff room, and reception area were $203\;{\mu}g/m^3$, $5\;{\mu}g/m^3$, and $10\;{\mu}g/m^3$, respectively. Chloroform was the dominant THM in all sampling sites and mean concentrations were $16.30\;{\mu}g/m^3$, $0.51\;{\mu}g/m^3$, and $0.06\;{\mu}g/m^3$ poolside, in the staff room and reception area, respectively. Bromodichloromethane and Dibromochloromethane levels were respectively estimated as $10.3\;{\mu}g/m^3$ and $1.7\;{\mu}g/m^3$ poolside, $1.3\;{\mu}g/m^3$ and $0.1\;{\mu}g/m^3$ in the staff room, and were not detected in the reception area. The cancer risks from inhalation exposure to THMs were estimated between $3.37{\times}10^{-7}$ and $1.84{\times}10^{-5}$. A short circulation phenomenon was observed from the supply air vents to the exhaust air vents located in the ceiling. A high temperature layer was formed within one meter of the ceiling, and a low temperature layer was formed under this layer due to the low velocity and high temperature of the supply air, and the improper locations of the supply air vents and exhaust air vents. The stagnation was evident at the above adult pool and the mean age of the air was 22 minutes. Disinfection by-products in the indoor swimming pool were present in higher concentrations than in the outdoor air. In order to increase the removal of pollutants, adjustment was required of the supply air volume and the supply/exhaust position.

저전력 무선센서 네트워크를 이용한 빌딩 내 환경공조 시스템 (Indoor Air-Conditioning System in building Using Lower Power Wireless Sensor Network)

  • 이승철;정완영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2007년도 춘계종합학술대회
    • /
    • pp.397-400
    • /
    • 2007
  • 본 연구에서는 소형, 저전력 센서와 센서 인터페이스를 구현하여 빌딩내의 실내 공조시스템과 함께 연동하고자 하였다. 빌딩 내 공조시스템은 저비용인 저전력 무선센서 노드간의 네트워크를 형성하여 각 룸마다 오염농도를 분석하여 룸의 오염 상태를 확인 한 후 실내 공조시스템에 있는 팬을 자동으로 조절해서 최적의 환경을 조성할 수 있게 하였다. 또한 GUI 인터페이스를 통해 각 룸의 있는 센서노드의 배터리 상태를 확인할 수 있는 것은 물론 모니터링이 필요한 가스의 농도와 온도 등을 확인 할 수도 있었다. 본 논문에서는 IEEE 802.15.4와 Zigbee를 지원하는 근거리 통신망을 갖는 저전력 무선센서 노드를 이용하여 무선센서 네트워크를 형성하기 위해 Ad-hoc 기능을 갖는 Simple forwarding routing을 구현하였다. 그리고 가스센서의 전력소모를 줄이기 위해서 전기화학적으로 환원 또는 산화하여 외부회로에 흐르는 전류를 측정하는 저전력 전기화학식 가스센서를 사용하였으며, 가스센서 인터페이스를 저전력으로 동작하도록 설계하였다.

  • PDF

Sorbent Thermal Desorption/Gas Chromatography/Mass Selective Detection Method for Determination of Gaseous Polycyclic Aromatic Hydrocarbons in Indoor Air

  • Dai, Shugui;Zhang, Lin;Zhu, Tan
    • 분석과학
    • /
    • 제8권4호
    • /
    • pp.753-758
    • /
    • 1995
  • Thermal desorption/gas chromatography/mass selective detection method using Tenax cartridges for the determination of gaseous polycyclic aromatic hydrocarbons(PAH) is described. Glass fiber filter can collect only PAH in particulate. Gaseous PAH may penetrate the filter. Glass cartridge packed Tenax-GC was uses fur adsorption of gaseous PAH. The air of inhalation zone was collected fur 2-10 hours. Cartridges were thermally desorbed in the reverse direction to sample flow. The desorption conditions were as follows; desorption temperature; $300^{\circ}C$; desorption time; 20min; column head pressure; 30psi; inlet split vent; closed during desorption.

  • PDF

선량 환산 관례를 이용한 생애유효선량 및 라돈피폭 위험도 예측: 대학 강의실 라돈농도 중심으로 (Prediction for the Lifetime Effective Dose and Radon Exposure Risk by using Dose Conversion Convention: Base on the Indoor Radon Concentration of Lecture Room in a University)

  • 이재승;권대철
    • 대한의용생체공학회:의공학회지
    • /
    • 제39권6호
    • /
    • pp.243-249
    • /
    • 2018
  • The indoor radon concentration was measured in the lecture room of the university and the radon concentration was converted to the amount related to the radon exposure using the dose conversion convention and compared with the reference levels for the radon concentration control. The effect of indoor radon inhalation was evaluated by estimating the life effective dose and the risk of exposure. To measure the radon concentration, measurements were made with a radon meter and a dedicated analysis Capture Ver. 5.5 program in a university lecture room from January to February 2018. The radon concentration measurement was carried out for 5 consecutive hours for 24 hours after keeping the airtight condition for 12 hours before the measurement. Radon exposure risk was calculated using the radon dose and dose conversion factor. Indoor radon concentration, radon exposure risk, and annual effective dose were found within the 95% confidence interval as the minimum and maximum boundary ranges. The radon concentration in the lecture room was $43.1-79.1Bq/m^3$, and the maximum boundary range within the 95% confidence interval was $77.7Bq/m^3$. The annual effective dose was estimated to be 0.20-0.36 mSv/y (mean 0.28 mSv/y). The life-time effective dose was estimated to be 0.66-1.18 mSv (mean $0.93{\pm}0.08mSv$). Life effective doses were estimated to be 0.88-0.99 mSv and radon exposure risk was estimated to be 12.4 out of 10.9 per 100,000. Radon concentration was measured, dose effective dose was evaluated using dose conversion convention, and degree of health hazard by indoor radon exposure was evaluated by predicting radon exposure risk using nominal hazard coefficient. It was concluded that indoor living environment could be applied to other specific exposure situations.

건축자재에 의한 실내 오존제거 및 제어에 대한 고찰 (Consideration of Ozone Removal and Control in Built Environment by Building Materials)

  • 정옥영;정수광;김준현;김수민
    • 설비공학논문집
    • /
    • 제24권6호
    • /
    • pp.467-475
    • /
    • 2012
  • Recently, residents have been spending almost 90% of their time indoors, which presents a higher risk from inhalation of pollutants than when spending time outdoors. Therefore, controlling indoor air quality became important. It is reported that the lung diseases and mortality for occupants are increased when there is high density of ozone which is one of the pollutants among the indoor air. In addition, the reactions between ozone and building materials produce VOCs and formaldehyde. The studies to eliminate the ozone by building materials have been actively investigated. However, ozone removal and secondary pollutants from ozone reactions with building materials have not been reported in Korea. For this reason, the aim of this study is to introduce ozone removal by HVAC filters, various building materials, and eco-friendly building materials including the quantity of secondary pollutant emissions.

다매체/다경로 노출을 고려한 benzo(a)pyrene의 총 인체 노출량 예측 (Estimating Human Exposure to Benzo(a)pyrene through Multimedia/Multiroute Exposure Scenario)

  • 문지영;양지연;임영욱;박성은;신동천
    • Environmental Analysis Health and Toxicology
    • /
    • 제18권4호
    • /
    • pp.255-269
    • /
    • 2003
  • The objective of this study was to estimate human exposure to benzo (a)pyrene through multimedia/multi-pathway exposure scenario. The human exposure scenario for benzo(a)pyrene was consisted of 12 multiple exposure pathways, and the multipathway human exposure model based on this scenario constituted. In this study, the multipathway human exposure model was used to estimate the concentrations in the exposure contact media, human intake factors and lifetime average daily dose (LAD $D_{model}$) of benzo(a)pyrene in the environment. Sensitivity analysis was performed to identify the important parameters and Monte-Carlo simulation was undertaken to examine the uncertainty of the model. The total LAD $D_{model}$ was estimated to be 5.52${\times}$10$^{-7}$ mg/kg-day (2.06${\times}$10$^{-7}$ -8.65${\times}$10$^{-7}$ mg/kg-day) using the multipathway human exposure model. The inhalation dose accounted for 78% of the total LADD, whereas ingestion and dermal contact intake accounted for 20.2% and 1.8% of the total exposure, respectively. Based on the sensitivity analysis, the most significant contributing input parameter was benzo (a)pyrene concentration of ambient air. Consequently, exposure via inhalation in outdoor/indoor air was the highest compared with the exposure via other medium/pathways.

충청북도 일부지역 내 주택 실내 라돈 농도 (A Study on the Concentrations of Indoor Radon for Houses in Chungcheongbuk-do Province, Korea)

  • 지현아;유주희;김가현;원수란;김선홍;이정섭
    • 한국환경보건학회지
    • /
    • 제45권6호
    • /
    • pp.668-674
    • /
    • 2019
  • Objectives: Modern people spend most of their day indoors. As the health impact of radon becomes an issue, public interest also has been growing. The primary route of potential human exposure to radon is inhalation. Long-term exposure to high levels of radon increases the risk of developing lung cancer. Radon exposure is known to be the second-leading cause of lung cancer, following tobacco smoke. This study measures the indoor radon concentrations in detached houses in area A of Chungcheongbuk-do Province considering the construction year, cracks in the houses, the location of installed detectors, and seasonal effects. Methods: The survey was conducted from September 2017 to April 2018 on 1,872 private households located in selected areas in northern Chungcheongbuk-do Province to figure out the year of building construction and the location of detector installed and identify the factors which affect radon concentrations in the air within the building. Radon was measured using a manual alpha track detector (Raduet, Hungary) with a sampling period of longer than 90 days. Results: Indoor radon concentrations in winter within area A was surveyed to be 168.3±193.3 Bq/㎥. There was more than a 2.3 times difference between buildings built before 1979 and those built after 2010. The concentration reached 195.4±221.9 Bq/㎥ for buildings with fractures and 167.2±192.4 Bq/㎥ for buildings without fractures. It was found that detectors installed in household areas with windows exhibited a lower concentration than those installed in concealed spaces. Conclusion: High concentrations of indoor radon were shown when there was a crack in the house. Also, ventilation seems to significantly affect radon concentrations because when the location of the detector in the installed site was near windows compared to an enclosed area, radon concentration variation increased. Therefore, it is considered that radon concentration is lower in summer because natural ventilation occurs more often than in winter.

지하수에서 유래한 벤젠의 노출경로별 인체축적특성 (Accumulation Property in Human Body of Benzene Derived from Groundwater According to Exposure Pathway)

  • 김상준;이현호;박지연;이유진;유동한;양지원
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제9권1호
    • /
    • pp.12-27
    • /
    • 2004
  • 본 연구에서는 벤젠을 대상으로 오염된 지하수를 생활용수로 사용했을 때 발생하는 실내오염도를 모사하고 실내에서 가능한 흡입, 섭취, 피부흡수와 같은 노출경로를 고려하여 노출시나리오를 자성하였다. 인체에 유입된 벤젠에 대하여 PBPK 모델을 이용하여 인체의 각 장기에 어떻게 분포하는지를 분석하였다. 결과에서 흡입과 섭취가 주요노출 경로였으며 남성이 여성보다 많은 호흡량으로 인해 보다 높은 노출속도를 유지하였다. 노출속도에 대한 피부흡수의 공헌도는 상대적으로 매우 작았다. 단기노출의 결과 오염물 노출에 대하여 SPT, RPT,간의 정맥혈 중 벤젠농도는 빠르게 증감하는 반면 지방의 경우는 느리게 반응하였고 많은 벤젠이 지방세포에 축적되어 정맥혈에는 적은 농도로 존재하였다. 장기간 노출에서 여성은 남성보다 전체적으로 2.1배 많은 벤젠을 체내에 축적하고 있는 것으로 나타났다. 장기간 노출에서 총유입벤젠의 98%가 호흡과 대사분해에 의해 제거되었다. 흡입경로는 벤젠이 호흡배출에 의해 69.8% 제거되었으며 섭취경로는 48.4%로 오염물이 유입되는 위치에 따라 각각의 제거기작의 공헌도가 다르게 나타났다. 본 연구의 결과는 실내오염에 따라 오염물이 체내에 흡수되고 분포ㆍ제거되는 현상을 이해하고 노출저감대책을 마련하는데 필요한 자료를 제공하고자 하였다.