• Title/Summary/Keyword: Indoor fire

Search Result 210, Processing Time 0.029 seconds

A MULTI-STORY FIRE IN HIGH-RISE APARTMENT BUILDING DEVELOPED THROUGH BALCONIES - INVESTIGATION AND EXPERIMENTS -

  • Hasemi, Yuji;Hayashi, Yoshihiko;Hokugo, Akihiko;Yoshida, Masashi
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.361-368
    • /
    • 1997
  • Summary of experiments for the investigation of a fire which caused an upward fire spread for over 12 floors through balconies in a high-rise apartment complex is reported. The experiments include indoor tests to obtain fire properties of vertical PMMA fences and outdoor ones with a full scale model of the balcony. The test results suggest significance of the increase of total flame height by the merging of flames and a cooperative effect of the burning of the PMMA fence and combustibles on the balconies for the generation of a tall flame enough to cause ignition on the upper floors.

  • PDF

A Study on Behavior Characteristics through Way Decision of Indoor Evacuation (실내 피난경로 선택 특성)

  • Hwang, Kwang-Il;Sim, Young-Hoon;Kim, Hyun-Sung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.10a
    • /
    • pp.268-269
    • /
    • 2014
  • The purpose of this research is to investigate characteristics for way decision of indoor evacuation, when humans are faced on disaster such as fire, earthquake and explosion. As a research, it is found that majority of evacuation behavior characteristics was in a fire, disaster.

  • PDF

An Experimental Study on the Operating Characteristics with HVAC Type of Shopping Center in Underground Passage (지하도상가의 HVAC 구성방식에 따른 운전특성 연구)

  • Lee, Hong-Cheol;Hwang, In-Ju
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.76-81
    • /
    • 2007
  • The shopping center in underground passage increased for efficient space utilization in urban area. This study describes operation characteristics of all air type and hybrid type with local ventilation and fan coil unit fixed to ceiling. In order to compare energy saving, thermal environment and installation space, etc., integrated simulator with heat production and indoor distribution system is designed and constructed. Energy saving of the hybrid system is calculated as over 30% compared to conventional all air type. And also the results showed that humidity decreased about 6%, also indoor thermal distribution is improved as temperature variation of around $1^{\circ}C$.

  • PDF

Numerical Study on the Fire Damaged Reinforced Concrete Building Structures Considering Influencing Fire Case and Parameters of Columns (화재피해를 받은 철근콘크리트 건축물의 기둥의 영향인자를 고려한 해석적 연구)

  • Suh, Yeonwoo;Son, Hee Ju
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.4
    • /
    • pp.101-112
    • /
    • 2022
  • Expanding urbanization practices result in high numbers of buildings being developed in city centers. This high building concentration leads to an increased fire risk, resulting in higher casualty rates and increased economic damages compared to fires in the past. The purpose of this study was to analyze the structural behavior of fire-damaged reinforced concrete buildings using analytical methods and to suggest methods of improving fire resistance in the event of a fire. Damage levels were measured using commercial software to apply the finite element method, ABAQUS, and MIDAS GEN to the dataset. Load-deflection curves were calculated using the effective area and moment of inertia of the fire-damaged columns provided by ABAQUS. The results of this analysis indicate that fire-damaged beams with experience greater deflection from indoor fires than they will from outdoor fires. Fires that occurred on the middle floors were more dangerous than those occurring on higher floors, and eccentrically loaded columns experienced more damage than axially loaded columns. The results indicate that these methods accurately predict structural behaviors of fire damaged concrete columns by considering fire exposure area and eccentric loading.

A Study on the Guide to Emergency Exit by Tracking Location of Smartphone Users (스마트폰 사용자의 실내 위치 추적을 통한 응급 상황 대피로 안내에 대한 연구)

  • Quan, Yu;Jang, Jung-Hwan;Jang, Jing-Lun;Jho, Yong-chul;Lee, Chang-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.20 no.1
    • /
    • pp.33-40
    • /
    • 2018
  • The rate of fire in buildings is gradually increasing in these days and the damage of property are severely increasing. This study suggests a methodology that provides information of the emergency exits based on indoor location services. The methodology uses determination technology and the latest update of indoor map generation via the built-in sensors of smartphone. This paper enhances the accuracy of indoor localization, and also it is to study how to provide exact indoor layout for rescuing the workers in emergency, such as fires and natural disasters.

A Study on the Ventilation Improvement of Diesel Locomotive Engine Load Test Building using Computational Fluid Dynamics (전산유체역학을 이용한 디젤엔진 부하시험장의 환기 개선에 관한 연구)

  • Park Duckshin;Jeong Byungcheol;Cho Youngmin;Park Byunghyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.2
    • /
    • pp.227-242
    • /
    • 2005
  • The aim of this study is to relieve the poor ventilation problem of the diesel locomotive engine load test building, located in an urban area. This paper evaluates the ventilation performances of the studied load test building based on the temperature measurement experiment and the computational fluid dynamics (CFD) during the engine load test. The temperature rise caused by the radiator blower of the building was turned out to be the main cause of disturbing the thermal conditions of the building. The indoor temperature distributions simulated by Fluent were validated with the temperature measurement results obtained from the studied building. The simulation results indicated that the comfort condition of this building was poor We suggested several remedial changes in the duct structure of this building for the improvement of the comfort conditions. In addition, a prototype drawing combining several improved design options was proposed. and then the simulation of the temperature distribution in the proposed prototype was performed. The result indicated that the indoor thermal condition of this proposed building was improved when compared with that of the current building.

Pressure Analysis and Conceptual Design for Indoor Ballistic Test Range by Numerical Methods (수치해석기법을 이용한 실내시험장 압력특성해석 및 개념설계)

  • Jung, Hui-Young;Park, Kwan-Jin;Kim, Nam-Hyuk
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.55-62
    • /
    • 2017
  • For evaluating a large caliber ammunition tests, indoor ballistic test range is required to reduce the noise and fragments occurring during the test. To ensure the reliability of the indoor ballistics test range design, we carried out the analysis of the indoor test range using the AUTODYNE hydrodynamic code before its construction. The 120 mm tank ammunition is adopted as a reference model and we analysed the characteristics of the pressure distribution at fire area, the structure design at impact area, the over-pressure applied to the tunnel, and the sabot stopper design. The results of the analysis were applied to the design of the indoor ballistic test range.

Airborne Sound Insulation Performance of Window and Indoor Noise Level in the Balcony Expanded Apartments

  • Park, Hyeon Ku
    • KIEAE Journal
    • /
    • v.15 no.2
    • /
    • pp.61-67
    • /
    • 2015
  • Purpose: The balcony in the apartment is important space not only as a fire escape but also as a buffer for heat and sound insulation. However, with the legalization of balcony expansion for residential apartments in Korea in 2006, many households have eliminated the balcony space altogether to increase the inner space, often without sufficient consideration for the effects on the indoor environment. This study examined the sound insulation performance of exterior-facing windows in enclosed balconies and the changes in the indoor acoustic environment due to expansion to provide a basis for appropriate balcony expansion. The apartments for the field test were chosen where two balcony types can be compared, and the sound insulation performance for the eighteen balcony windows was measured. The windows installed were typical double window with thickness 16 mm or 22 mm. Measurements of the weighted standard sound pressure level difference showed a decrease of about 3 dB in sound insulation performance due to expansion. For common exterior noise levels of 70-85 dB(A), the indoor noise level can exceed 45 dB(A), the limit level regulated in Korea. However, it was found that the sound insulation performance of the window and the quality of the construction have more influence on indoor noise levels than balcony expansion itself.

A Study on Fire Evacuation Guidance System using Indoor Spatial Information from Beacon (실내공간정보를 활용한 비콘기반 화재위험감지와 재실자 피난지원 서비스에 관한 연구)

  • Lee, Sun Min;Kim, Tae-Kyung;Hong, Sung-Moon;Kim, Ju-hyung;Kim, Jae-Jun
    • Journal of KIBIM
    • /
    • v.6 no.3
    • /
    • pp.15-23
    • /
    • 2016
  • The purpose of this study is to present the possibility of adopting beacons to implement the fire evacuation guidance system in order to reduce the evacuation time for a fire in complex buildings. A beacon-based evacuation system can quickly detect a fire's origin, optimal path of evacuation involved with the exits and the location of evacuees using information collected by the proposed system. The assessment is conducted by integrating different scenario models including fire simulation. Based on the research result, beacon is an effective tool to warn potential hazards or to provide early detection and a safe escape.

Life-Road : Development of an Emergency Evacuation Application using Augmented Reality and Beacon (Life-Road : 증강현실과 비콘을 사용하는 긴급대피용 애플리케이션 개발)

  • Myeon-gyun Cho
    • Journal of Digital Policy
    • /
    • v.2 no.4
    • /
    • pp.11-15
    • /
    • 2023
  • Recently, a fire suddenly broke out in a crowded theater, and many people were unable to find an escape route, becoming entangled, injured, and suffocating from smoke inhalation, resulting in a large-scale fire accident. Even though most of the people were young, they were unable to evacuate. If they had been elderly, it could have resulted in greater casualties. In particular, since it is difficult to receive accurate location information from GPS indoor, there is an urgent need for location-based services using beacons and an emergency evacuation system that intuitively shows evacuation routes in augmented reality using smart-phones. In this paper, an augmented reality-based emergency evacuation smartphone app was developed based on identifying fire locations and evacuation routes using beacons and fire sensors (IoT). In the future, if the proposed system is applied to indoor spaces where people are crowded, rapid evacuation will be possible even in a sudden fire accident, minimizing human damage.