• Title/Summary/Keyword: Indoor and outdoor

Search Result 1,342, Processing Time 0.024 seconds

A Comparative Study on Clinical Gait Abilities of Stroke Patients According to Indoor and Outdoor Environments

  • Hwang, Hyesun;Woo, Youngkeun;Chung, Yijung
    • Physical Therapy Rehabilitation Science
    • /
    • v.10 no.3
    • /
    • pp.356-366
    • /
    • 2021
  • Objective: This study aimed to compare gait ability through gait evaluations in indoor and outdoor environments according to the general characteristics and walking ability of stroke patients. Design: Crossed-sectional study. Methods: The subjects of this study were 57 hospitalized stroke patients.The study subjects were asked to select an indoor environment and an outdoor environment in random order, and the Timed Up and Go Test (TUG), 10-Meter Walk Test (10MWT), Figure-Eight Walk Test (F8WT) and the Functional Gait Assessment (FGA) were used to assess each environment. Results: The TUG, 10MWT, F8WT time and number of steps, and FGA showed a significant decrease in gait ability in the outdoor environment compared to the indoor environment (p<0.05). Although the TUG, 10MWT, and the time required for the F8WT were statistically higher in the outdoor compared to the indoor environment at points 2, 3, and 4, but not 5 of the functional ambulatory category (FAC), significant increases in the number of steps of the F8WT were found in the outdoor compared to the indoor environment for only points 2 and 3 of the FAC (p<0.05). In the FAC 3 and 4, there was a statistically significant decrease in the outdoor compared to the indoor environment only in the FGA (p<0.05). Conclusions: Therefore, it has been shown that the gait ability of stroke patients is reduced in the outdoor environment compared to the gait ability in the indoor environment.

Physical and Mechanical Characteristics of Phellodendron amure Ruprecht (황벽나무의 물리·역학적 특성)

  • Kim, Hyun-Woo;Byeon, Hee-Seop;Kim, Byung-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.519-524
    • /
    • 2017
  • Physical, mechanical and deteriorating properties of Phellodendron amure were investigated. Air dried density located indoor was 0.41 but $0.43g/cm^3$ outdoor. In oven dry shrinkage, T/R ratio for located indoor was 1.40 but 1.32 outdoor. Hygroscopic property at $40^{\circ}C$ with 90% relative humidity was 16.30% for indoor and 15.80% for outdoor. Compressive strength for outdoor conditioned sample was 43.81 MPa but 40.33 MPa for indoor conditioned. Also bending strenght for outdoor conditioned was 84.63 MPa but 68.80 MPa for indoor conditioned. Impact strength was 3.43 and $4.00J/cm^2$ indoor and outdoor, respectively. Hardness at cross-section was 47.92 and 49.20 MPa indoor and outdoor, respectively. With one-year conditioning at indoor or outdoor, there was no significantly different in strength properties, which came from strong resistance for deterioration. Also Phellodendron amure wood showed dimensionally stable raw material based on low T/R ratio.

Estimation of NO$_2$ Source Generation and Ventilation rate in Residence by Multiple Measurements

  • Won Ho, Yang;Gi Yeong, Lee
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.05a
    • /
    • pp.155-160
    • /
    • 2003
  • Indoor air quality can be affected by indoor sources, ventilation, decay and outdoor levels. Although technologies exist to measure these factors, direct measurements are often difficult. The purpose of this study was to develop an alternative method to characterize indoor environmental factors by multiple indoor and outdoor measurements. Daily indoor and outdoor $NO_2$ concentrations were measured for 30 consecutive days in 28 houses in Brisbane, Australia, and for 21 consecutive days in 37 houses in Seoul, Korea. Using a mass balance model and regression analysis, penetration factor (ventilation rate divided by the sum of ventilation rate and deposition constant) and source strength factor (source strength divided by the sum of ventilation rate and deposition constant) were calculated using multiple indoor and outdoor measurements. Subsequently, the ventilation rate and $NO_2$ source strength were estimated. Geometric means of ventilation rate were 1.44 ACH in Brisbane, assuming a residential $NO_2$ deposition constant of 1.05 $hr^{-1}$, and 1.36 ACH in Seoul, with the measured residential $NO_2$ deposition constant of 0.94 $hr^{-1}$. Source strengths of $NO_2$ were 15.8 $\pm$ 18.2 ${\mu}g$/$m^3$.hr and 44.7 $\pm$ 38.1${\mu}g$/$m^3$.hr in Brisbane and Seoul, respectively. In conclusion, indoor environmental factors were effectively characterized by this method using multiple indoor and outdoor measurements.

  • PDF

Estimation of Nitrogen Dioxide Source Generation and Ventilation Rate in Residence Using Multiple Measurements in Korea

  • Chung, Moon-Ho;Yang, Won-Ho
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2004.12a
    • /
    • pp.45-50
    • /
    • 2004
  • Indoor air quality can be affected by indoor sources, ventilation, decay and outdoor levels. Alt hough technologies exist to measure these factors, direct measurements are often difficult. The purpose of this study was to develop an alternative method to characterize indoor environmental factors by multiple indoor and outdoor measurements. Daily indoor and outdoor NO2 concentrations were measured for 30 consecutive days in 28 houses in Brisbane, Australia, and for 21 consecutive days in 37 houses in Seoul, Korea. Using a mass balance model and regression analysis, penetration factor (ventilation rate divided by the sum of ventilation rate and deposition constant) and source strength factor (source strength divided by the sum of ventilation rate and deposition constant) were calculated using multiple indoor and outdoor measurements. Subsequently, the ventilation rate and NO2 source strength were estimated. Geometric means of ventilation rate were 1.44 ACH in Brisbane, assuming a residential NO2 deposition constant of 1.05 hr-1, and 1.36 ACH in Seoul, with the measured residential NO2 deposition constant of 0.94 hr-1. Source strengths of N02 were 15.8 ${\pm}$ 18.2 ${\mu}$g/m3${\cdot}$hr and 44.7 ${\pm}$ 38.1 ${\mu}$g/m3${\cdot}$hr in Brisbane and Seoul, respectively. In conclusion, indoor environmental factors were effectively characterized by this method using multiple indoor and outdoor measurements.

  • PDF

A Study on Indoor Thermal Environment in an Tower Type Apartment House at Tropical Nights (여름철 열대야 발생시 탑상형 아파트의 실내온열환경에 대한 연구)

  • Chang, Hyun-Jae;Kim, Hyung-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.1
    • /
    • pp.20-25
    • /
    • 2010
  • In this study, As a basic research for improving indoor thermal environment at tower type apartment houses, specifications of heat storage and heat emission in the structures of apartment houses were investigated, and the ratio of indoor and outdoor air velocity at tower type apartment house was examined, too. Indoor temperature at night time was higher than outdoor air temperature because heat emission from the structure of wall, ceiling and floor those are constructed by use of reinforced concrete which has large heat capacity. The ratio of indoor and outdoor air velocity was lower than 0.1 and this was caused by the plan of tower type apartment house. PMV was in the range of 0.3~1.9, and was about 1.0 (it means slightly warm) at 10 : 00 p.m.. To improve indoor thermal environment in summer season at tower type apartment houses, it needs more investigation on specifications of heat storage and heat emission in the structure including winter season, and on the improvement of the ratio of indoor and outdoor air velocity.

An Analysis on Building Shading Plan for a City Hall considering Energy Saving

  • Kim, Jin Lee;No, Sang Tae
    • KIEAE Journal
    • /
    • v.16 no.2
    • /
    • pp.5-10
    • /
    • 2016
  • Purpose: Recently, many public office buildings which were built by curtain wall increased rapidly, but the results of the investigation of the government, these buildings have been found that the heating and cooling thermal load is high, and showed low energy efficiency. Method: To evaluate the effects by applying outdoor louver and indoor blind, which can control solar radiation in order to reduce the heating and cooling load of public office building which was built by glass curtain wall. The heating and cooling load was calculated via Energyplus, building and outdoor louver, indoor blind were modeled by Google sketchup connected to Energyplus. Result: The results of this study were as follows; the case of applying various outdoor louver, the heating and cooling load all decreased as compared to the case without applying outdoor louver, the case of applying indoor blind, the heating and cooling load decreased as compared to the case without applying indoor blind, but indoor blind showed low energy performance comparing outdoor louver.

Microenvironmental Exposures To Volatile Organic Compounds (미규모 환경에서의 휘발성 유기화합물 노출)

  • Jo, Wan-Kuen;Gang, Kwi-Wha;Woo, Hyung-Taek;Park, Jong-Kil
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.61-61
    • /
    • 1995
  • Volatile organic compounds(VOCs) are of concern for their potential chronic toxicity, their suspected role in the formation of smog, and their suspected role in destruction of stratospheric ozone. Present study evaluated the exposures to selected VOCs in three microenvironments: 2 chlorinated and 5 aromatic VOCs in the indoor and outdoor air, and 5 aromatic VOCs in the breathing zone air of gas-service station attendants. With permissible Quality Assurance and Quality Control performances VOC concentrations were measured 1) to be higher in indoor air than in outdoor air, 2) to be higher in two Taegu residential areas than in a residential area of Hayang, and 3) to be higher in the nighttime than in the daytime. Among five aromatics, Benzene and Toluene were two most highly measured VOCs in breathing zone air of service station attendants. Based on the sum of VOC concentrations, the VOC exposure during refueling was estimated to be about 10% of indoor and outdoor exposures. For Benzene only, the exposure during refueling was estimated to cause about 52% of indoor and outdoor exposure. The time used to calculate the exposures was 2 minutes for refueling and 24 hours for indoor and outdoor exposures.

Microenvironmental Exposures To Volatile Organic Compounds (미규모 환경에서의 휘발성 유기화합물 노출)

  • 조완근;강귀화
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.447-459
    • /
    • 1995
  • Volatile organic compounds(VOCs) are of concern for their potential chronic toxicity, their suspected role in the formation of smog, and their suspected role in destruction of stratospheric ozone. Present study evaluated the exposures to selected VOCs in three microenvironments: 2 chlorinated and 5 aromatic VOCs in the indoor and outdoor air, and 5 aromatic VOCs in the breathing zone air of gas-service station attendants. With permissible Quality Assurance and Quality Control performances VOC concentrations were measured 1) to be higher in indoor air than in outdoor air, 2) to be higher in two Taegu residential areas than in a residential area of Hayang, and 3) to be higher in the nighttime than in the daytime. Among five aromatics, Benzene and Toluene were two most highly measured VOCs in breathing zone air of service station attendants. Based on the sum of VOC concentrations, the VOC exposure during refueling was estimated to be about 10% of indoor and outdoor exposures. For Benzene only, the exposure during refueling was estimated to cause about 52% of indoor and outdoor exposure. The time used to calculate the exposures was 2 minutes for refueling and 24 hours for indoor and outdoor exposures.

  • PDF

Seasonal Contribution of Indoor generated- and Outdoor Originating PM2.5 to Indoor Concentration Depending on Airtightness of Apartment Units (공동주택의 기밀성능에 따른 실외 유입 및 실내 발생 PM2.5의 계절별 실내농도 기여도 분석)

  • Park, Bo Ram;Choi, Dong Hee;Kang, Dong Hwa
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.2
    • /
    • pp.155-163
    • /
    • 2020
  • Indoor airborne particles are consisted of outdoor- and indoor-generated particles, which can be characterized by their compositions, generation features and toxicity. The identification of source contribution of indoor and outdoor origin to indoor particles is important to understand PM2.5 transport in a building as well as its impact on occupant health. The objective of this study is to investigate seasonal source contribution to indoor PM2.5 concentration depending on airtightness of apartment units. To evaluate the source contribution, particle transport including penetration, generation, exfiltration in an apartment housing unit was simulated by using CONTAM with particle and airflow simulation parameters obtained from field measurements. The result showed that the outdoor source contribution to indoor air was relatively dominant in the leaky housing unit during spring (77.2%) and winter (73.9%), and the indoor source was dominant in the airtight housing unit during summer (60.3%) and fall (60.7%). These results indicate the seasonal health risk of indoor PM2.5 can be varied according to airtightness of apartment units.

Experimental Study on Energy Saving Performance of Outdoor Temperature Reset Control Strategy for Central Cooling System (중앙 냉방시스템에 대한 외기보상제어의 절약 성능에 관한 실험적 연구)

  • Kim, Dong-Cheol;Song, Jae-Yeob;Ahn, Byung-Cheon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.7 no.2
    • /
    • pp.30-36
    • /
    • 2011
  • In this study, energy saving performance of outdoor temperature reset control strategy for central cooling system is researched by experiments. Outdoor temperature reset control is the control method to change indoor air set temperature according to outdoor air temperature change. The range of indoor air set temperature is represented by the comfort temperature range of indoor air temperature offered from ASHRAE and indoor air set temperature is programmed between $22^{\circ}C$ and $27^{\circ}C$ by outdoor air temperature $20^{\circ}C{\sim}32^{\circ}C$ in summer. As a result of applying outdoor temperature reset control to central cooling system, the suggested control method shows better performances of energy savings than the conventional method which indoor temperature maintains constantly.