• Title/Summary/Keyword: Indoor Spatial Information

Search Result 176, Processing Time 0.02 seconds

Finding Optimal Paths in Indoor Spaces using 3D GIS (3D-GIS를 이용한 건물 내부공간의 최적경로탐색)

  • Ryu Keun-Won;Jun Chul-Min;Jo Sung-Kil;Lee Sang-Mi
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.387-392
    • /
    • 2006
  • 3D-based information is needed increasingly as well as 2D Information as cities grow and buildings become large and complex, and use of 3D-models is getting attention to handle such problems. However, there are limitations in using 3D-models because most applications and research efforts using them have been for visual analysis. This study presents a method to find optimal paths in indoor spaces as an illustration for using 3D-models in spatial analysis. We modeled rooms, paths and other facilities in a building as individual 3D objects. We made it possible to find paths based on network structure by integrating the vector-based networks of 2D-GIS and 3D-model.

  • PDF

Development of a Spatial Subdivision Technique using BIM for Space Syntax Analysis of a Korean Traditional House (BIM을 이용한 전통 한옥의 공간구문 분석을 위한 공간분할기법 개발)

  • Jeong, Sang Kyu
    • KIEAE Journal
    • /
    • v.10 no.3
    • /
    • pp.57-62
    • /
    • 2010
  • To effectively use Building Information Modelling (BIM) dealing with semantic information including the entities of building components, the information about building components should be standardized. Like standardized modern buildings. in the past, Korean traditional houses were built according to strict procedures and formats. Therefore, if the Korean traditional house are modelled by using BIM,. not only the Korean traditional house of good quality will be built quickly and cheaply, but also spaces in the existing Korean traditional house will be easily analyzed. However, when analyzing spaces of the Korean traditional house using Space Syntax, some problems are caused in dividing outdoor space such as yard with unclear boundaries, unlike indoor space with clear boundaries surrounded by walls. These comes from the fact that researchers have subjectively divided a space in the house into convex spaces as units for Space Syntax analysis. Therefore, this study aims to develop an objective and rational spatial subdivision technique for Space Syntax analysis of a Korean traditional house modelled by using BIM. We could objectively and reasonably divide a Korean traditional house space into convex spaces by recognizing the building components in the house modelled in the form of Industry Foundation Classes(IFC). Depending on the connection of convex spaces allocated in the spatial subdivision technique, j-graph in Space Syntax could be drawn and the measurements of spatial configurations could be determinded. Through the developed technique, the social properties including the cultural and philosophical aspects of Korean people was identified by measuring the spatial configurations of Korean traditional house. The developed technique will serve as useful means to help architects to find an appropriate purpose of each space for sustainable architecture on the basis of the spatial and social relationships in buildings or urban systems.

A Mechanism to identify Indoor or Outdoor Location for Three Dimensional Geofence (3차원 지오펜스를 위한 실내외 위치 식별 메커니즘)

  • Eom, Young-Hyun;Choi, Young-Keun;Cho, Sungkuk;Jeon, Byungkook
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.169-175
    • /
    • 2016
  • Geofence is a virtual perimeter for a real-world geographical area, which could be statically or dynamically established the specified area if necessary. Many geofencing applications incorporate 2D(two-dimensional) map such as the Google map, allowing administrators to define boundaries on top of a satellite view of a specific geographical area. But these applications do not provide 3D(three-dimensional) spatial information as well as 2D location information no matter where indoor or outdoor. Therefore we propose a mechanism to identify indoor or outdoor location for 3D geofence, and implement 3D geofence using smartphone. The proposed mechanism identifies the position information on 3D geofence regardless of indoor or outdoor, inter-floor with only GPS and WiFi. In the near future, 3D geofence as well as LBS are promising applications that become possible when IoT can become organized and connected by location.

A study on the standardization requirements of indoor geospatial information for u-LBS (u-LBS를 위한 실내 공간정보 표준화 요구사항에 관한 연구)

  • Ha, Su-Wook;Lee, So-Yeon;Ryu, Keun-Ho
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2010.09a
    • /
    • pp.308-310
    • /
    • 2010
  • 무선 네트워크 인프라의 확산 및 스마트폰의 대중화에 따라 사용자 위치를 바탕으로 하는 여러 증강현실 서비스들이 상용화되고 있으며, 유비쿼터스 컴퓨팅의 핵심 기술인 위치 인식과 관련하여 실내/외 환경에서 사용자 위치정보를 획득하기 위한 다양한 기술들이 개발되고 있다. 본 논문에서는 실내 및 실외 환경에서 사용자의 위치를 인식하고 서비스를 제공하는데 필요한 공간정보 요소를 도출하고, 이와 관련된 국제 표준화 현황과 향후 표준화 요구사항을 제안하고자 한다.

  • PDF

A Study on the Regulation Plan of Evacuation Facilities Based on the Consciousness of Cinema User (영화관 이용자의식에 기초한 피난시설 규제방안 연구)

  • Chung, Pyung-Rahn
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.3
    • /
    • pp.105-113
    • /
    • 2011
  • The purpose of this paper is to provide a suggestion regarding how to make systematically improve the evacuation facilities of the cinema which is a large indoor space and utilizing by a numerous people. For the first, as a method of study, an analyzed on researching documentary recorders which are concerned with building codes regarding the evacuation facilities of cinema is made, and Secondary, carried out a survey of questionnaire for finding what the most audiences' idea regarding evacuation facilities of the cinema while they are utilizing the facilities, and analyzed the information. In the focus of the users, the result of analyzation reveals that as the item of practical facilities such as width and number of exit ways from viewer seats, width of corridors are highly suggested to improve practical system.

Syntax-based Accessibility Analysis Algorithm for Indoor Spaces (실내공간을 위한 기반 Syntax 접근성 분석 알고리즘)

  • Kim, Hye-Yeong;Jeon, Cheol-Min
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2007.10a
    • /
    • pp.247-256
    • /
    • 2007
  • Accessibility is a field of study that has primarily been applied to urban or transportation problems two dimensionally. However, in large complex buildings as shopping centers or hospitals, inter-spatial accessibility among compartments has to be taken into account such as in building layouts or evacuation planning. This study expands space syntax theory, one of accessibility-related methodologies used for computing connectivity in urban or architectural spaces, into 3D indoor spaces. Although space syntax is basically a topology-based theory that does not consider general costs such as distance or time, this study suggests modification that incorporates different types of impedances in moving between places including distances, turns and transfers between floors. The proposed method is applied to a 3D campus building model in computing and displaying the accessibility to exit doors or cohesive accessibility among similar functions.

  • PDF

Development of Linking & Management System for High-Resolution Raw Geo-spatial Data based on the Point Cloud DB (Point Cloud 기반의 고해상도 원시데이터 연계 및 관리시스템 개발)

  • KIM, Jae-Hak;LEE, Dong-Ha
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.4
    • /
    • pp.132-144
    • /
    • 2018
  • 3D Geo-spatial information models have been widely used in the field of Civil Engineering, Medical, Computer Graphics, Urban Management and many other. Especially, in surveying and geo-spatial field, the demand for high quality 3D geospatial information and indoor spatial information is so highly increasing. However, it is so difficult to provide a low-cost and high efficiency service to the field which demand the highest quality of 3D model, because pre-constructed spatial data are composed of different formats and storage structures according to the application purpose of each institutes. In fact, the techniques to construct a high applicable 3D geo-spatial model is very expensive to collect and analyze geo-spatial data, but most demanders of 3D geo-spatial model never want to pay the high-cost to that. This study, therefore, suggest the effective way to construct 3D geo-spatial model with low-cost of construction. In general, the effective way to reduce the cost of constructing 3D geo-spatial model as presented in previous studies is to combine the raw data obtained from point cloud observatory and UAV imagery, however this method has some limitation of usage from difficulties to approve the use of raw data because of those have been managed separately by various institutes. To solve this problem, we developed the linking & management system for unifying a high-Resolution raw geo-spatial data based on the point cloud DB and apply this system to extract the basic database from 3D geo-spatial mode for the road database registration. As a result of this study, it can be provided six contents of main entries for road registration by applying the developed system based on the point cloud DB.

Synthetic Trajectory Generation Tool for Indoor Moving Objects (실내공간 이동객체 궤적 생성기)

  • Ryoo, Hyung Gyu;Kim, Soo Jin;Li, Ki Joune
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.4
    • /
    • pp.59-66
    • /
    • 2016
  • For the performance experiments of databases systems with moving object databases, we need moving object trajectory data sets. For example, benchmark data sets of moving object trajectories are required for experiments on query processing of moving object databases. For those reasons, several tools have been developed for generating moving objects in Euclidean spaces or road network spaces. Indoor space differs from outdoor spaces in many aspects and moving object generator for indoor space should reflect these differences. Even some tools were developed to produce virtual moving object trajectories in indoor space, the movements generated by them are not realistic. In this paper, we present a moving object generation tool for indoor space. First, this tool generates trajectories for pedestrians in an indoor space. And it provides a parametric generation of trajectories considering not only speed, number of pedestrians, minimum distance between pedestrians but also type of spaces, time constraints, and type of pedestrians. We try to reflect the patterns of pedestrians in indoor space as realistic as possible. For the reason of interoperability, several geospatial standards are used in the development of the tool.

Benefits from Utilizing A Conceptual Model of Indoor GIS Based Evacuation Information System

  • Luo, Wen-Yuan;Ahn, Byung-Ju;Kim, Jae-Jun;Lee, Gwang-Gook;Kim, Whoi-Yul
    • Korean Journal of Construction Engineering and Management
    • /
    • v.10 no.5
    • /
    • pp.148-157
    • /
    • 2009
  • When an emergency situation happens in buildings, the top priority is to ensure the occupant from danger as soon as possible. Achieving that goal is a multifaceted and difficult task. However, current evacuation systems have many deficiencies in dealing with the emergency in multi-level structures. The shortage of abilities to continuously update database, predict the future situation and provide the information to users with contextual information is the limit in current systems. Thus, it is very crucial to introduce Evacuation Information System (EIS), which is able to respond quickly to the emergency, and transfer the information to both the administrator and the occupant. The main purpose of this paper is to build EIS on the basis of the indoor Geographical Information System (GIS). When the emergency happens, EIS gives the instruction to Emergency Response Model (ERM) at once. ERM carries out the order and calculates the optimal evacuation routes, then sends the result to EIS. At last, EIS transmits evacuation messages to the occupant who implements evacuation plan. This paper highlights the benefits of EIS in two aspects. One is that EIS can update the data continuously to support evacuation strategy-making. The other is that it can transmit evacuation messages to both the administrator and the occupant.

3D Indoor Modeling Based on Terrestrial Laser Scanning (지상레이저스캐닝 기반 3차원 실내 모델링)

  • Hong, Seung Hwan;Cho, Hyoung Sig;Kim, Nam Hoon;Sohn, Hong Gyoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.525-531
    • /
    • 2015
  • According to the increasing demand for 3D indoor spatial information, the utilization of a terrestrial laser scanner comes to the fore. However, the research for the comparison between a terrestrial laser scanning method and a traditional surveying method is insufficient. The paper evaluated the time-efficiency and the locational accuracy of an AMCW type and a direct TOF type of terrestrial laser scanning methods in comparison with the observation using a total station. As a result, an AMCW type showed higher time-efficiency than a direct TOF type and the RMSE between the two types of data was ${\pm}1mm$. Moreover, the terrestrial laser scanning method showed twice higher time-efficiency than the observation using a total station and the RMSE between the two data was ${\pm}3.4cm$. The results indicate that the terrestrial laser scanning method has better profitability and performance for 3D indoor modeling than the traditional survey using a total station. In the future, a terrestrial laser scanner can be efficiently utilized in the construction of 3D indoor spatial information.