• 제목/요약/키워드: Indoor Particulate Matter

검색결과 119건 처리시간 0.024초

대학 캠퍼스 주변 호프집, PC방, 당구장의 실내 PM2.5 농도를 통한 ETS 노출 수준 평가 (Evaluation of Indoor ETS Exposure Levels in Pubs, PC Game Rooms, and Billiards Halls around a University Campus using PM2.5 Concentrations)

  • 이재환;박동욱;하권철
    • 한국산업보건학회지
    • /
    • 제26권4호
    • /
    • pp.411-417
    • /
    • 2016
  • Objectives: The aims of this study were to determine the indoor level of environmental tobacco smoke (ETS) and to assess the implementation rate of smoke-free laws at hospitality venues around a university campus by measuring particulate matter smaller than $2.5{\mu}m$ ($PM_{2.5}$) as an indicator of ETS. Materials and Methods: We measured indoor $PM_{2.5}$ concentrations at 20 PC game rooms, 20 pubs, and 20 billiards halls using Sidepak AM510, a direct reading portable real time monitor, from October to December 2015. Results: Smoking was observed in 65% of the PC game rooms, 10% of pubs, and 85% of billiards halls. The average $PM_{2.5}$ concentrations were $98.2{\mu}g/m^3$, $29.0{\mu}g/m^3$, and $134.2{\mu}g/m^3$ at PC game rooms, pubs, and billiards halls, respectively. $PM_{2.5}$ concentrations in PC game rooms and billiards halls were 2 to 2.7 times higher than the 24-hour exposure standard for outdoor $PM_{2.5}$ ($50{\mu}g/m^3$) by the Ministry of Environment. Conclusions: Although a smoking ban has been implemented for PC rooms and pubs, smoking is still taking place in many of these places. More stringent legal action is required for successfully protecting patrons and workers from secondhand smoke exposure. A ban on smoking in billiards halls should be introduced as quickly as possible.

비육돈사 공기중 분진 수준에 대한 시계열적 분석 및 돈사내외부 분진 수준 비교분석 (Secular Trend in Indoor Dust Levels with a Comparison of Indoor and Exhaust Outlet Dust Levels in Swine Confinement Buildings)

  • 김형아;김창열;;양수정;;조지훈;;신소정;송은섭;이윤범;김효철;김경란;이경숙;허용
    • 한국환경보건학회지
    • /
    • 제45권6호
    • /
    • pp.630-637
    • /
    • 2019
  • Objectives: This study was performed to evaluate the secular changes in indoor airborne dust or endotoxin levels in the dust from swine confinement buildings. Indoor levels were compared with the level at the exhaust outlet in order to examine the contribution potential of indoor dust to nearby ambient air dust. Methods: Comparisons were made on inhalable and respirable dust levels reported in 2002, 2012, and 2017 from 14, 10, and 36 swine fattening confinement buildings in Korea, respectively. This data was produced by the same research group. Levels of endotoxin adsorbed into inhalable or respirable dust were also compared. Samples of inhalable or respirable dust were collected indoors and at exhaust outlets from 17 swine fattening confinement buildings in 2019, and dust levels were compared between the indoor and the outlet. Results: The outlet inhalable dust level (0.111 mg/㎥) was approximately 19% of that from indoors, and the respirable dust level (0.033 mg/㎥) was approximately 74% of that from indoors. The outlet respirable dust levels were lower than the airborne fine dust levels in the towns where those farms are located. No significant difference was observed in the inhalable dust levels among the years examined, but the respirable dust level in 2017 (0.143 mg/㎥) was significantly lower than in 2002 (0.328 mg/㎥). The level of endotoxin in inhalable dust was significantly higher in 2017 (722 EU/㎥) than in both 2002 (75 EU/㎥) and 2012 (171 EU/㎥). Conclusion: Even though no apparent contribution from swine farm indoor dust to nearby ambient air dust was observed in terms of amount, a certain control strategy to reduce the production of airborne dust and endotoxin from swine farms is merited.

DNA 기반 곰팡이 평가기법을 활용한 주택의 실내 곰팡이 노출수준 평가 (Evaluation of Indoor Mold Exposure Level in dwelling Using DNA-Based Mold Assessment Method)

  • 황은설;서성철;이주영;류정민;권명희;정현미;조용민;이정섭
    • 한국산업보건학회지
    • /
    • 제28권4호
    • /
    • pp.382-392
    • /
    • 2018
  • Objective: Allergic diseases such as asthma due to fungal exposure in houses have increased, and proper management is urgent. Mold can grow in the air, floor, walls, and other areas according to environmental conditions, and there are many limitations to the conventional methodology for examining fungal exposure. For this reason, the degree of fungal contamination is being evaluated by ERMI (Environmental Relative Moldiness Index), a quantitative analysis method proposed by the EPA. In this study, we compared ERMI values between water-damaged dwellings and non-damaged ones to evaluate the effectiveness of Korean ERMI values. We also explored the association of ERMI values with the level of airborne mold and characteristics of dwellings. Methods: Floor dust was collected after installing a Dustream collector on the suction port of a vacuum cleaner. The collected samples were filtered to remove only 5 mg of dust, and DNA was extracted using the FastDNA SPIN KIT protocol. Results: The ERMI values were found to be 19.6 (-6.9-58.8) for flooded houses, 7.5 (-29.2-48.3) for leaks/condensation, and 0.8 (-29.2-37.9) for non-damaged dwellings. The airborne concentration of mold for flooded, leakage or condensed, and non-damaged houses were $684CFU/m^3$, $566CFU/m^3$, and $378CFU/m^3$, respectively. The correlation between ERMI values and the levels of airborne mold was low (R = 0.038), but a weakly significant association of the ERMI values with the concentration of particulate matter ($PM_{10}$) was observed as well(R=0.231,P<0.05). Conclusions: Our findings show that the reference value using ERMI can be used to distinguish water-damaged and non-damaged dwellings. It is believed that ERMI values could be a promising tool for assessing long-term fungal exposure in dwellings.

공기조화기 장착용 축상유입식 싸이클론의 압력손실에 대한 수치해석 및 실험적 연구 (Numerical and experimental study on the pressure dorp of axial-flow cyclone in the air handling unit)

  • 권순박;박덕신;조영민;김세영;김명준;김호중;김태성
    • 한국입자에어로졸학회지
    • /
    • 제5권2호
    • /
    • pp.37-43
    • /
    • 2009
  • Particulate matter (PM) is one of the major indoor air pollutants especially in the subway station in Korea. In order to remove PM in the subway station, several kinds of PM removal system such as roll-filter, auto-washable air filter, demister, and electrostatic precipitator are used in the air handling unit (AHU) of subway stations. However, those systems are prone to operation and maintenance problems since the filter-regeneration unit consisting of electrical or water jet parts might malfunction due to the high load of particulates unless the filter medium is periodically replaced. In this study, the use of axial-flow cyclone was proposed for particulate filter unit in the AHU for its low operation and maintenance cost. Novel shape of axial-flow cyclone was designed by using computational fluid dynamics (CFD). The shape of vortex vane was optimized in terms of pressure drop and tangential velocity. In addition, CFD analysis was validated experimentally through the pressure drop measurement of mock-up model. We found that pressure drop and tangential velocity of fluid through the axia-flow cyclone was significantly affected by the rotating degree of vortex vane and the numerical prediction of pressure drop agreed well with experimental measurement.

  • PDF

The Correlation between Radon (Rn222) and Particulate Matters (PM10, PM2.5, PM1.0) in Subway Tunnel in Seoul.

  • Versoza, Michael;Park, Duckshin
    • 한국입자에어로졸학회지
    • /
    • 제13권2호
    • /
    • pp.87-95
    • /
    • 2017
  • Radon ($Rn^{222}$) is a radioactive gas and is found at high concentrations underground. Investigations were done in many years specifically on public transportations such as in the subway stations, concourses and platforms for these are located underground areas. This study correlates the $Rn^{222}$ concentrations with the Particulate Matter (PM) concentration for the gas could be attached or trapped inside these particles. It was done on the opening subway tunnel of Miasageori Station going to Mia Station (Line 4) last August 2016. Based on the result, the $Rn^{222}$ were more influenced on the mass ratio (%) of PM present in the air instead of its mass concentration (${\mu}g/m^3$). As the $PM_{10}$ mass ratio increases ($42.32{\pm}1.03%$) during morning rush-hours, radon starts to increase up to $0.97{\pm}0.03pCi/L$. But during the afternoon $Rn^{222}$ concentrations decreased while the composition were stable at $22.96{\pm}3.0%$, $39.04{\pm}0.6%$ and $38.01{\pm}0.3%$ in $PM_1$, $PM_{2.5}$ and $PM_{10}$ respectively. It was then assumed that it could be the composition of the morning hours of the station were influencing the concentration of the radon.

실내 미세먼지 측정을 위한 저가형 PM 센서의 실험실/현장 평가 및 보정 방법 (Laboratory/Field evaluation and calibration method of low-cost PM sensor for indoor PM2.5, PM10 measurement)

  • 김도헌;신동민;황정호
    • 한국입자에어로졸학회지
    • /
    • 제18권4호
    • /
    • pp.109-127
    • /
    • 2022
  • Recently, low-cost particulate matter (PM) sensors have been widely used in monitoring mass concentration. Maintaining the accuracy of the sensors is important and requires rigorous performance evaluation and calibration. In this study, two commercial low-cost PM sensors(LCS), Plantower PMS3003 and Plantower PMS7003, were evaluated in the laboratory and field with a reference-grade PM monitor (GRIMM 11-D). Laboratory evaluation was conducted with single/mixed particles of PSL (Poly Styrene Latex) in an acrylic chamber at 20℃ and relative humidity of 20%. Field evaluation was conducted inside a building of Yonsei University (Shinchon) from February 12 to March 31, 2022. In both evaluations, LCS measured values became different from reference measured values when the relative humidity was high or the outdoor air PM10/PM2.5 ratio was high. Based on the field evaluation, the LCS measured values were corrected through four different regression analysis models. As a result, the multivariate polynomial regression analysis model showed highest matching with the reference PM monitor (PM2.5 >0.9, PM10 >0.85). In this model, the PM10/PM2.5 ratio and relative humidity were chosen as independent variables.

지하역사 내 승하차 인원에 따른 식생바이오필터의 미세먼지 저감효과와 운전전략 (The Fine Dust Reduction Effect and Operational Strategy of Vegetation Biofilters Based on Subway Station Passenger Volume)

  • 이재영;김예진;김미주
    • 반도체디스플레이기술학회지
    • /
    • 제22권4호
    • /
    • pp.13-18
    • /
    • 2023
  • A subway station is a prominent multi-purpose facility where the quantitative management of fine dust, generated by various factors, is conducted. Recently, eco-friendly air purification methods using air-purifying plants are being discussed, with the focus on biofiltration through vegetation. Previous research in this field has confirmed the reduction effects of transition metals such as Fe, which have been identified as harmful to human health. This study aimed to identify the sources of fine dust dispersion within subway stations and derive an efficient operational strategy for air-purifying plants that takes into account the behavior characteristics of fine dust within multi-purpose facilities. The experiment monitored regional fine dust levels through IAQ stations established based on prior research. Also, the data was analyzed through time-series and correlation analyses by linking it with passenger counts at subway stations and the frequency of train stops. Furthermore, to consider energy efficiency, we conducted component-specific power consumption monitoring. Through this study, we were able to derive the optimal operational strategy for air-purifying plants based on time-series comprehensive analysis data and confirm significant energy efficiency.

  • PDF

서울시 일부 학교의 실내 공기질 조사 및 인식도 평가 (Assessment of Conscious Coginition Degree and Survey on the Indoor Air Quality at a public School in Seoul)

  • 손종렬;변상훈;김영환;김종혁;조윤수;이재영;박윤주
    • 환경위생공학
    • /
    • 제18권3호통권49호
    • /
    • pp.100-109
    • /
    • 2003
  • Recently, Indoor air quality(IAQ) in workplace, residential environments and schools has been concern of people, scientists and related the public. And so in Seoul has recognized the healthy effect related to IAQ in schools. Therefore, the objective of this study reported in this article were to measure and compare the perception of IAQ of selected air pollutants at three different schools in Seoul. We performed a questionnaire survey of 400 students about their awareness for the importance of IAQ in our school. And we measured the IAQ of 3 schools considering as site region, construction year and studying level. The indoor air pollutants and parameters such as temperature, relative humidity, respirable particulate matter(PM10), formaldehyde(HCHO), total bacteria counts(TBC), carbon dioxide(CO$_2$), and noise were monitored in indoors. In results, all most response of occupant has recognized the awareness of IAQ at schools. The PMIO, TBC and Noise level of all schools were higher than the standard of the public 150 ${mu}$g/m$^3$ and 500CFU/m$^3$, the level formaldehyde(HCHO) was below 0.1 ppm of the healthy guideline of Korea And the concentration of CO$_2$ were investigated below 1,000 ppm of the standard implying ventilation in 2 schools except for 1 school(c school). Finally, the control of most important pollutants of IAQ in school were PM10, TBC and Noise. Therefore, it can be concluded that the indoor air quality of selected 3 schools studied was perceived as acceptable, it is recommended that the government related IAQ was suggested the guideline and control of IAQ problems in schools, and all member relating school need to be effort to reduce the exposure of sources to undesirable indoor pollutants such as Particlate and Noise.

지상과 지하역사의 실내공기질 특성과 외기영향 평가 (Characteristics of indoor air quality in the overground and underground railway stations)

  • 남궁형규;송지한;김수연;김희만;권순박
    • 한국산학기술학회논문지
    • /
    • 제17권5호
    • /
    • pp.17-25
    • /
    • 2016
  • 본 연구에서는 지하역사와 지상역사에서의 실내공기질을 측정하고, 외부 공기에 의한 영향 정도를 확인하고자 하였다. 측정된 물질은 '실내공기질 관리법'상에서 유지기준과 권고기준으로 지정된 항목 중, 농도가 검출되지 않은 석면을 제외한 미세먼지($PM_{10}$), 이산화탄소($CO_2$), 일산화탄소(CO), 이산화질소($NO_2$), 폼알데하이드(HCHO), 오존($O_3$), 총부유세균(TAB), 총휘발성유기화합물(TVOC), 라돈 등 9종이다. 또한 미세먼지, 이산화질소, 오존 등 세 가지 물질은 I/O ratio를 통해 외기에의한 영향을 확인하였다. 공기질 측정결과 지상역사에 비해 지하역사에서 미세먼지, 폼알데하이드, 총휘발성유기화합물, 이산화질소, 라돈 등이 높은 농도로 검출되었으며, 이는 지하역사 내부에 그 오염물질의 발생요소가 존재하기 때문으로 판단된다. 오존 농도는 지상역사에서 지하역사보다 높은 농도로 검출되었으며, 특히 외부로 노출되어있는 지상역사 승강장에서 높은 농도를 보임으로써 외기 유입에 의한 영향이 있는 것으로 확인되었다. 따라서, 외기에 의한 영향을 받는 오염물질은 역사의 기계환기시 제거 과정을 거쳐 오염물질의 실내유입을 차단하고, 지하역사에서 기인한 미세먼지 등의 물질들은 실내에서 그 발생원에 따른 별도의 처리가 필요할 것으로 판단된다.

교실 내 벽면녹화를 통한 초미세먼지(PM2.5) 저감 효과 평가 (Evaluation of Particulate Matter (PM2.5) Reduction through Greenwalls in Classrooms)

  • 최치구;양호형;김호현;권혁구
    • 한국환경보건학회지
    • /
    • 제49권4호
    • /
    • pp.183-189
    • /
    • 2023
  • Background: The indoor air quality of classrooms, in which the capacity per unit area is high and students spend time together, must be managed for safety and comfort. It is necessary to develop an eco-friendly indoor air quality reduction method rather than biased management that relies solely on air purifiers. Objectives: In this study, plants and air purifiers were installed in middle school classrooms to evaluate the indoor PM2.5 reduction. Methods: Four middle school classrooms were selected as test beds. Air quality was monitored in real-time every one minute using IoT equipment installed in the classrooms, corridors, and rooftops. After measuring the background concentration, plants and air purifiers were installed in the classroom and the PM2.5 reduction effect was analyzed through continuous monitoring. Results: After installing the plants and air purifiers, the average PM2.5 concentration was 33.7 ㎍/m3 in the classrooms without plants and air purifiers, 25.6 ㎍/m3 in classrooms with plants only, and 21.7 ㎍/m3 in classrooms with air purifiers only. In the classroom where plants and air purifiers were installed together, it was 20.0 ㎍/m3. The reduction rates before and after installation were 4.5% for classrooms with plants only, 16.5% for classrooms with air purifiers only, and 27.6% for classrooms with both plants and air purifiers. The I/O ratio, which compares the concentration of PM2.5 in classrooms with corridors and outside air, also showed the lowest in the order of plants and air purifiers, air purifiers, and plant-only classrooms. Conclusions: The PM2.5 reduction effect of using plants was confirmed, and it is expected to be used as basic data for the development of environmentally-friendly indoor air quality improvement methods.