• Title/Summary/Keyword: Indoor Location System

Search Result 443, Processing Time 0.025 seconds

Indoor Positioning System for Moving Objects on an Indoor for Blind or Visually Impaired Playing Various Sports

  • Lee, Young-Bum;Lee, Myoung-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.131-134
    • /
    • 2009
  • We have proposed an indoor positioning system for moving objects and/for the blind or visually impaired to play various sports. [ for a blind or visually impaired playing various sports.] This system consists of a wireless heart rate monitor, wireless sensor network and / 4 ultrasound satellites [ configuration with four ultrasound satellite modules) at the corners of the room. This system provides / the real-time measurement of the location and heart rate of the person in the room[ non-invasive measurement method of the heart rate and the location of a person in real time ], and will help the [a] blind or visually impaired enjoy sports more easily.

An Indoor Location Trace System using Smart Devices and Wi-Fi infrastructure (스마트 기기와 Wi-Fi 인프라를 이용한 실내 측위 시스템)

  • Cho, Eighyun;Hwang, Taegyu;Kim, Daeho;Hong, Jiman
    • Smart Media Journal
    • /
    • v.4 no.2
    • /
    • pp.68-76
    • /
    • 2015
  • Recently, research on indoor locating techniques using smart device sensors has been conducted actively, Owing to the exponential increase in the use of various smart devices. However, in order to develop indoor location techniques, there are limitations due to the requirement that the tracking system has to function without GPS. In this paper, we propose an accurate indoor locating system that does not require additional infrastructure. The proposed scheme is developed based on the idea that the advantages and disadvantages of "Wi-Fi Fingerprinting" and "Step Detection" techniques are complementary. In the proposed scheme, we track users with "Step Detection," and correct errors with "Wi-Fi Fingerprinting." In this paper, we demonstrate the effectiveness and feasibility of our proposed scheme through experiments.

Method and Apparatus for indoor position Measurement (실내 측위의 섹터 분할 방법 및 섹터분할 장치)

  • Jeong, Seung-Hyuk;Shin, Hyun-Shik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.6
    • /
    • pp.903-908
    • /
    • 2011
  • The purpose of this paper is to provider an indoor location measuring method, apparatus and Service available for mobile wireless network. This paper introduces positioning technology such as Basic Technology Element and QoS(Quality of Service) etc. of WPS(WiFi Positioning System) for mobile wireless network. An apparatus for sectionalizing an indoor area for indoor location measurement includes several steps. For example, a sector number input step, a sectionalization calculating step, a storing unit step etc. Also, This paper show advance Indoor positioning result.

A Model Stacking Algorithm for Indoor Positioning System using WiFi Fingerprinting

  • JinQuan Wang;YiJun Wang;GuangWen Liu;GuiFen Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.4
    • /
    • pp.1200-1215
    • /
    • 2023
  • With the development of IoT and artificial intelligence, location-based services are getting more and more attention. For solving the current problem that indoor positioning error is large and generalization is poor, this paper proposes a Model Stacking Algorithm for Indoor Positioning System using WiFi fingerprinting. Firstly, we adopt a model stacking method based on Bayesian optimization to predict the location of indoor targets to improve indoor localization accuracy and model generalization. Secondly, Taking the predicted position based on model stacking as the observation value of particle filter, collaborative particle filter localization based on model stacking algorithm is realized. The experimental results show that the algorithm can control the position error within 2m, which is superior to KNN, GBDT, Xgboost, LightGBM, RF. The location accuracy of the fusion particle filter algorithm is improved by 31%, and the predicted trajectory is close to the real trajectory. The algorithm can also adapt to the application scenarios with fewer wireless access points.

RF and Ultrasonic Interference Reduction Technique in Indoor Location Sensing Systems (실내 위치 인식 시스템에서 RF와 초음파 간섭 축소 기법)

  • Hwang, Sung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.1
    • /
    • pp.364-369
    • /
    • 2012
  • Location information is a critical element of ubiquitous computing. Cricket is an indoor location-based system that transmits radio and ultrasonic signals in regular intervals to calculate the distance between nodes. However, the amount of signal interference and collisions increases in proportion with the number of nodes, losing the accuracy of the location-based system. This study proposes an algorithm based on the 802.15.2 MAC protocol for the wireless sensor network to reduce signal interference and collision by employing node numbers and the frequency reuse approach used in mobile telecommunication. We analyzed the performance of our algorithm. The obtained results showed that the algorithm is an effective for throughput and energy compared to the Cricket system.

Indoor Location and Pose Estimation Algorithm using Artificial Attached Marker (인공 부착 마커를 활용한 실내 위치 및 자세 추정 알고리즘)

  • Ahn, Byeoung Min;Ko, Yun-Ho;Lee, Ji Hong
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.240-251
    • /
    • 2016
  • This paper presents a real-time indoor location and pose estimation method that utilizes simple artificial markers and image analysis techniques for the purpose of warehouse automation. The conventional indoor localization methods cannot work robustly in warehouses where severe environmental changes usually occur due to the movement of stocked goods. To overcome this problem, the proposed framework places artificial markers having different interior pattern on the predefined position of the warehouse floor. The proposed algorithm obtains marker candidate regions from a captured image by a simple binarization and labeling procedure. Then it extracts maker interior pattern information from each candidate region in order to decide whether the candidate region is a true marker or not. The extracted interior pattern information and the outer boundary of the marker are used to estimate location and heading angle of the localization system. Experimental results show that the proposed localization method can provide high performance which is almost equivalent to that of the conventional method using an expensive LIDAR sensor and AMCL algorithm.

Development of a Indoor LBS Application for Navigation - Focusing on Development for an IndoorGML Editor and Viewer - (실내 길 찾기를 위한 Indoor LBS 어플리케이션 개발 - IndoorGML 에디터(Editor) 및 뷰어(Viewer) 개발을 중심으로 -)

  • Yoon, Seung-Hyun;Choi, Jin-won
    • Korean Institute of Interior Design Journal
    • /
    • v.22 no.5
    • /
    • pp.207-215
    • /
    • 2013
  • Due to an increase in the number of large-scale and high rise buildings, the importance of indoor location information has been highlighted. As a result, seamless three-dimensional space information, linked to various indoor and outdoor services is required. The purpose of this study is to develop a system which can edit and operate indoor space information using the IndoorGML(Geography Markup Language). It provides functions such as converting and editing authoring indoor space using the IndoorGML. Based on defined schema which is the IndoorGML international standardization work, we develop the "Editor" and "Viewer" for the IndoorGML. When indoor space is modeled in an authoring tool, a variety of topologies can be created automatically. These are available to be edited and modified. Moreover, the file of model can be saved as IndoorGML, SBM and KML file. These files are viewed by the "Viewer". Indoor LBS(Location Based Service)is served with these principles.

Indoor Positioning System Using Fingerprinting Technique (Fingerprinting기법을 이용한 실내 위치측위시스템)

  • Nam, Doo-Hee;Han, Ho-Yeon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • According to the ubiquitous trend, the needs for the context based application service have been increased. These services take on Location Based Service which is based on the current location of users. It is widely used that localization techniques use GPS or ground wave and more efficient and accurate methods have been studied. Recently, not only services which targeted outdoor but also services which targeted indoor, for example home services and facility guidance of the building come into the spotlight. In case of the outdoor positioning area, COTH (Commercial Off-The-Shelf) has been released and used but relatively it doesn't produce an outcome in the indoor positioning area. Therefore, this paper Proposes the indoor positioning technique using wireless LAN (Local Area Network) which is one of the widely used wireless communication technique. It analyzes the typical WLAN location positioning methodology has been studied and their advantage and disadvantage also suggests how to design and implement the specific WLAN positioning system. In addition, it suggests new methods that progress the accuracy of the existing systems and improve the efficient computation.

  • PDF

Performance Improvement of Offline Phase for Indoor Positioning Systems Using Asus Xtion and Smartphone Sensors

  • Yeh, Sheng-Cheng;Chiou, Yih-Shyh;Chang, Huan;Hsu, Wang-Hsin;Liu, Shiau-Huang;Tsai, Fuan
    • Journal of Communications and Networks
    • /
    • v.18 no.5
    • /
    • pp.837-845
    • /
    • 2016
  • Providing a customer with tailored location-based services (LBSs) is a fundamental problem. For location-estimation techniques with radio-based measurements, LBS applications are widely available for mobile devices (MDs), such as smartphones, enabling users to run multi-task applications. LBS information not only enables obtaining the current location of an MD but also provides real-time push-pull communication service. For indoor environments, localization technologies based on radio frequency (RF) pattern-matching approaches are accurate and commonly used. However, to survey radio information for pattern-matching approaches, a considerable amount of time and work is spent in indoor environments. Consequently, in order to reduce the system-deployment cost and computing complexity, this article proposes an indoor positioning approach, which involves using Asus Xtion to facilitate capturing RF signals during an offline site survey. The depth information obtained using Asus Xtion is utilized to estimate the locations and predict the received signal strength (RF information) at uncertain locations. The proposed approach effectively reduces not only the time and work costs but also the computing complexity involved in determining the orientation and RF during the online positioning phase by estimating the user's location by using a smartphone. The experimental results demonstrated that more than 78% of time was saved, and the number of samples acquired using the proposed method during the offline phase was twice as much as that acquired using the conventional method. For the online phase, the location estimates have error distances of less than 2.67 m. Therefore, the proposed approach is beneficial for use in various LBS applications.