• Title/Summary/Keyword: Indoor Location

Search Result 773, Processing Time 0.03 seconds

Three Dimensional Indoor Location Tracking Viewer

  • Yang, Chi-Shian;Jung, Sang-Joong;Chung, Wan-Young
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.1
    • /
    • pp.108-118
    • /
    • 2009
  • In this paper we develop an indoor location tracking system and its 3D tracking monitoring viewer, viz., 3D Navigation Viewer (3DNV). We focus on the integration of an indoor location tracking system with the Virtual Reality Modeling Language (VRML), to facilitate a representation of the user's spatial information in virtual indoor environments that is synchronized with the physical location environment. The developed indoor location tracking system employs beacons as active transmitters, and a listener as a passive receiver. The distance information calculated from the difference speeds of RF and Ultrasonic signals is exploited, to determine the user's physical location. This is essential in supporting third parties like doctors and caregivers in identifying the activities and status of a particular individual via 3DNV. 3DNV serves as a unified user interface for an indoor location tracking system, showing the viewpoint and position of the target in virtual indoor environments. It was implemented using VRML, to provide an actual real time visualization of the target's spatial information.

A Study on Algorithm for Efficient Location Tracking in Indoor Environment (실내 환경에서 효율적인 위치 추적을 위한 알고리즘에 관한 연구)

  • Jeon Hyeon-Sig;Woo Sung-Hyun;Lee Ho-Eung;Ryu In-Seon;Yoon Sung-Kun;Park Hyun-Ju
    • Journal of Information Technology Applications and Management
    • /
    • v.13 no.3
    • /
    • pp.59-74
    • /
    • 2006
  • According to developing Wireless Communication, not only a location based service at the outside but also a location based service at the inside was more increased socially. This paper proposes the efficient algorithm to locate a transfer object in frequent change of indoor environment using indoor location tracking system we develop ourself. Proposing algorithm in this paper can locate a transfer object using the Fingerprint, one of the Location Tracking techniques which are used in general to minimize error data between Location Tracking System and Fingerprint, using this way that corrects location data as KF apply to result data can improve accuracy of a transfer object. At last we are going to compare and analyze existing typical triangulation with proposed Indoor location tracking system to demonstrate algorithm efficiency for proposed Indoor location tracking system.

  • PDF

Location-aware visualization of VRML models in indoor location tracking system

  • Yang, Chi-Shian;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.220-228
    • /
    • 2007
  • For many applications particularly in navigation system, a three-dimensional representation improves the usability of information. This paper introduces 3D Graphical User Interface (GUI) of indoor location tracking system, 3D Navigation View. The application provides users a 3D visualization of the indoor environments they are exploring, synchronized with the physical world through spatial information obtained from indoor location tracking system. It adopts widely used Virtual Reality Modeling Language (VRML) to construct, represent, distribute and render 3D world of indoor environments over Internet. Java, an all-purpose programming language is integrated to comprehend spatial information received from indoor location tracking system. Both are connected through an interface called External Authoring Interface (EAI) provided by VRML. Via EAI, Java is given the authority to access and manipulate the 3D objects inside the 3D world that facilitates the indication of user's position and viewpoint in the constructed virtual indoor environments periodically.

Step Trajectory/Indoor Map Feature-based Smartphone Indoor Positioning System without Using Wi-Fi Signals (Wi-Fi 신호를 사용하지 않고 보행자 궤적과 건물내 지도 특성만을 이용한 스마트폰 실내 위치 측정 시스템)

  • Na, Dong-Jun;Choi, Kwon-Hue
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.6
    • /
    • pp.323-334
    • /
    • 2014
  • In this paper, we proposed indoor positioning system with improved accuracy. The proposed indoor location measurement system is based pedestrian location measurement method that use the embedded sensor of smartphone. So, we do not need wireless external resources, such as GPS or WiFi signals. The conventional methods measure indoor location by generating a movement route of pedestrian by step and direction recognition. In this paper, to correct the direction sensor error, we use the common feature of the normal indoor floor map that the indoor path is lattice-structured. And we quantize moving directions depending on the direction of indoor path. In addition, we propose moving direction measuring method using geomagnetic sensor and gyro sensor to improve the accuracy. Also, the proposed step detection method uses angle and accelerometer sensors. The proposed step detection method is not affected by the posture of the smartphone. Direction errors caused by direction sensor error is corrected due to proposed moving direction measuring method. The proposed location error correction method corrects location error caused by step detection error without the need for external wireless signal resources.

Development of 3-D viewer for indoor location tracking system using wireless sensor network

  • Yang, Chi-Shian;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.110-114
    • /
    • 2007
  • In this paper we present 3-D Navigation View, a three-dimensional visualization of indoor environment which serves as an intuitive and unified user interface for our developed indoor location tracking system via Virtual Reality Modeling Language (VRML) in web environment. The extracted user's spatial information from indoor location tracking system was further processed to facilitate the location indication in virtual 3-D indoor environment based on his location in physical world. External Authoring Interface (EAI) provided by VRML enables the integration of interactive 3-D graphics into web and direct communication with the encapsulated Java applet to update position and viewpoint of user periodically in 3-D indoor environment. As any web browser with VRML viewer plug-in is able to run the platform independent 3-D Navigation View, specialized and expensive hardware or software can be disregarded.

Indoor Location Estimation Using Wi-Fi RSSI Signals and Geomagnetic Sensors (Wi-Fi RSSI 신호와 지자기 센서를 이용한 실내 위치 추정)

  • Kim, Si-Hun;Kang, Do-Hwa;Kim, Kwan-woo;Lim, Chang Heon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.1
    • /
    • pp.19-25
    • /
    • 2017
  • Recently, indoor LBS has been attracting much attention because of its promising prospect. One of key technologies for its success is indoor location estimation. A popular one for indoor positioning is to find the location based on the strength of received Wi-Fi signals. Since the Wi-Fi services are currently prevalent, it can perform indoor positioning without any further infrastructure. However, it is found that its accuracy depends heavily on the surrounding radio environment. To alleviate this difficulty, we present a novel indoor position technique employing the geomagnetic characteristics as well as Wi-Fi signals. The geomagnetic characteristic is known to vary according to the location. Therefore, employing the geomagnetic signal in addition to Wi-Fi signals is expected to improve the location estimation accuracy.

Estimation of Human Location in Indoor Environment using BLE-based Beacon (BLE기반 비콘을 이용한 실내 환경에서의 사용자 위치추정)

  • Lim, Su-Jong;Sung, Min-Gwan;Yun, Sang-Seok
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.5
    • /
    • pp.195-200
    • /
    • 2021
  • In this paper, we propose a method for a mobile robot to estimate a specific location of a service provision target using a beacon-tag for the purpose of providing location-based services (LBS) to users in an indoor environment. To estimate the location, the irregular characteristics and error factors of the received signal strength indicator (RSSI) generated from the beacon are analyzed, and the distance conversion function is derived from the RSSI data extracted by applying a Gaussian filter. Then, the distance data converted from the plurality of beacons estimates an indoor location through a triangulation technique. After that, the improvement in the location estimation is analyzed by applying the temporal confidence reasoning technique. The possibility of providing a LBS of a mobile robot was confirmed through a location estimation experiment for a plurality of designated locations in an indoor environment.

Integrated Indoor Positioning Systems Reflecting Map Information for Location Based Services (위치기반서비스를 위한 지도정보가 반영된 옥내측위통합 시스템)

  • Yim, Jae-Geol;Joo, Jae-Hun;Jeong, Seung-Hwan
    • The Journal of Information Systems
    • /
    • v.17 no.1
    • /
    • pp.131-153
    • /
    • 2008
  • So many location based service systems, including automobile navigation system logistic management, taxi fleet management, and so on, are being used everywhere. However, these are all outdoors. This paper provides a stepping stone for commercial indoor location based services by developing an integrated system of our indoor positioning and map viewer modules. For the indoor positioning, we propose WLAN (Wireless Local Area Network) based EKF (Extended Kalman Filter) which estimates user's current location and tracts user's trace in the sequence of time. Our map viewer renders a map recorded in an Autocad DXF file and provides functions of map manipulation such as zoom-in, zoom-out, and move. We integrate our indoor positioning and map viewer modules and discuss the experimental results of the integrated system.

Adaptive Indoor Location Tracking System Based on IEEE 802.15.4a (IEEE 802.15.4a 기반의 환경 적응형 위치 추적 시스템에 관한 연구)

  • Jeon Hyeon-Sig;Woo Sung-Hyun;Cho Sang-Do;Na Jong-In;Kim Ki-Hwan;Park Hyun-Ju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.5A
    • /
    • pp.526-536
    • /
    • 2006
  • According as Ubiquitous comes, interest for indoor location tracking system was more increased socially. However, existing indoor location tracking system doesn't correspond actively in frequent change of indoor environment, and there is a problem that correct location measurement of transfer object is difficult by NLOS property of indoor environment. Purpose of this paper proposes environment accommodation location tracking system that is improved location precision of transfer object and grasps location of indoor transfer object effectively that is essential element effectively to provide service to satisfy various user's request according as Ubiquitous comes.

A Study on the Indoor Location Determination using Smartphone Sensor Data For Emergency Evacuation (스마트폰 센서 데이터를 이용한 실내 응급대피용 위치 추정 연구)

  • Quan, Yu;Jang, Jung-Hwan;Jin, Hye-Myeong;Jho, Yong-Chul;Lee, Chang-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.21 no.4
    • /
    • pp.51-58
    • /
    • 2019
  • The LBS(Location Based Service) technology plays an important role in reducing wastes of time, losses of human lives and economic losses by detecting the user's location in order by suggesting the optimal evacuation route of the users in case of safety accidents. We developed an algorithm to estimate indoor location, movement path and indoor location changes of smart phone users based on the built-in sensors of smartphones and the dead-reckoning algorithm for pedestrians without a connection with smart devices such as Wi-Fi and Bluetooth. Furthermore, seven different indoor movement scenarios were selected to measure the performance of this algorithm and the accuracy of the indoor location estimation was measured by comparing the actual movement route and the algorithm results of the experimenter(pedestrian) who performed the indoor movement. The experimental result showed that this algorithm had an average accuracy of 95.0%.