• 제목/요약/키워드: Indoor Autonomous Navigation

검색결과 78건 처리시간 0.03초

하이브리드 시스템 제어 방법을 이용한 이동로봇의 자율 추행 동작제어 (Autonomous Navigation Motion Control of Mobile Robots using Hybrid System Control Method)

  • 이용미;임미섭;임준홍
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권5호
    • /
    • pp.182-189
    • /
    • 2002
  • This paper presents a framework of hybrid dynamic control systems for the motion control of wheeled mobile robot systems with nonholonomic constraints. The hybrid control system has the 3-layered hierarchical structure: digital automata for the higher process, mobile robot system for the lower process, and the interface as the interaction process between the continuous dynamics and the discrete dynamics. In the hybrid control architecture of mobile robot, the continuous dynamics of mobile robots are modeled by the switched systems. The abstract model and digital automata for the motion control are developed. In high level, the discrete states are defined by using the sensor-based search windows and the reference motions of a mobile robot in low level are specified in the abstracted motions. The mobile robots can perform both the motion planning and autonomous maneuvering with obstacle avoidance in indoor navigation problem. Simulation and experimental results show that hybrid system approach is an effective method for the autonomous maneuvering in indoor environments

다층 실내 환경에서 계단 극복이 가능한 궤도형 로봇의 신뢰성 있는 자율 주행 정찰 시스템 (Reliable Autonomous Reconnaissance System for a Tracked Robot in Multi-floor Indoor Environments with Stairs)

  • 노주형;김보성;김도경;김지혁;심현철
    • 로봇학회논문지
    • /
    • 제19권2호
    • /
    • pp.149-158
    • /
    • 2024
  • This paper presents a robust autonomous navigation and reconnaissance system for tracked robots, designed to handle complex multi-floor indoor environments with stairs. We introduce a localization algorithm that adjusts scan matching parameters to robustly estimate positions and create maps in environments with scarce features, such as narrow rooms and staircases. Our system also features a path planning algorithm that calculates distance costs from surrounding obstacles, integrated with a specialized PID controller tuned to the robot's differential kinematics for collision-free navigation in confined spaces. The perception module leverages multi-image fusion and camera-LiDAR fusion to accurately detect and map the 3D positions of objects around the robot in real time. Through practical tests in real settings, we have verified that our system performs reliably. Based on this reliability, we expect that our research team's autonomous reconnaissance system will be practically utilized in actual disaster situations and environments that are difficult for humans to access, thereby making a significant contribution.

분산영상 매칭을 이용한 소형 쿼드콥터의 실내 비행 위치인식과 자율비행 (Position Recognition and Indoor Autonomous Flight of a Small Quadcopter Using Distributed Image Matching)

  • 진태석
    • 한국산업융합학회 논문집
    • /
    • 제23권2_2호
    • /
    • pp.255-261
    • /
    • 2020
  • We consider the problem of autonomously flying a quadcopter in indoor environments. Navigation in indoor settings poses two major issues. First, real time recognition of the marker captured by the camera. Second, The combination of the distributed images is used to determine the position and orientation of the quadcopter in an indoor environment. We autonomously fly a miniature RC quadcopter in small known environments using an on-board camera as the only sensor. We use an algorithm that combines data-driven image classification with image-combine techniques on the images captured by the camera to achieve real 3D localization and navigation.

레이저 스캐너를 사용한 이동로봇의 복도 자율 주행 시스템 (Autonomous Navigation System of Mobile Robot Using Laser Scanner for Corridor Environment)

  • 박종관;박태형
    • 제어로봇시스템학회논문지
    • /
    • 제21권11호
    • /
    • pp.1044-1049
    • /
    • 2015
  • This paper proposes an autonomous navigation system of mobile robots for indoor corridor environment. The system uses a laser scanner but does not use reflectors. The laser scanner measures the distance between robot and structures such as wall, pillar, and fixtures. Adaptive breakpoint detector and modified IEPF (iterative endpoint fit) are developed to find mark points from the distance data. The robot path for corridor is then generated using the angle histogram of the mark points. The experimental results are finally presented to show the effectiveness of the proposed method.

Experimental research on the autonomous mobile robotics

  • Yuta, Shin'ichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.17-17
    • /
    • 1996
  • An experimental research is a useful approach for realizing autonomous mobile robots to work in real environment. We are developing an autonomous mobile robot platform named "Yamabico" as a tool for experimental real world robotics research. The architecture of Yamabico is based on the concept of centralized decision making and functionally modularization. Yamabico robot has two level structure with behavior and function levels, and its hardware and software are functionally distributed for providing incremental development and good maintenancibility. We are using many Yamabico robots in our laboratory to realize the robust navigation technology for autonomous robots. The methodology for experimental and task-oriented approach of mobile robotics will be presented. And some experimental results of real world navigation in indoor and outdoor environment will be shown. be shown.

  • PDF

초음파 센서를 이용한 실내 환경 실시간 계측 모델 (Real-time Measurement Model of Indoor Environment Using Ultrasonic Sensor)

  • 이만희;조황
    • 한국통신학회논문지
    • /
    • 제30권6A호
    • /
    • pp.481-487
    • /
    • 2005
  • 이동형 로봇의 자율주행 능력을 높이기 위해서는 미리 알려진 주위 환경 특징들을 효과적으로 인식하는 방법의 개발이 매우 중요하다. 본 논문은 실내 로봇 주행 환경 내에서 위치 및 방향 정보가 미리 알려져 있는 벽과 모퉁이 같은 환경 특징들을 초음파 센서를 이용하여 실시간적으로 인식하는 방법을 제안한다. 초음파 센서는 한 개의 초음파 송신기와 이를 중심으로 적절한 거리에 대칭적으로 위치된 두 개의 초음파 수신기로 구성된다. 초음파 센서로부터 얻어진 정보는 확장 칼만 필터를 이용하여 기존 방법과는 달리 실시간적으로 처리됨으로써 인식된 환경 특징들에 대해 상대적으로 로봇의 위치 및 방향의 보정을 가능하게 한다.

실내 물류 환경에서 라이다-카메라 약결합 기반 맵핑 및 위치인식과 네비게이션 방법 (Loosely Coupled LiDAR-visual Mapping and Navigation of AMR in Logistic Environments)

  • 최병희;강경수;노예진;조영근
    • 로봇학회논문지
    • /
    • 제17권4호
    • /
    • pp.397-406
    • /
    • 2022
  • This paper presents an autonomous mobile robot (AMR) system and operation algorithms for logistic and factory facilities without magnet-lines installation. Unlike widely used AMR systems, we propose an EKF-based loosely coupled fusion of LiDAR measurements and visual markers. Our method first constructs occupancy grid and visual marker map in the mapping process and utilizes prebuilt maps for precise localization. Also, we developed a waypoint-based navigation pipeline for robust autonomous operation in unconstrained environments. The proposed system estimates the robot pose using by updating the state with the fusion of visual marker and LiDAR measurements. Finally, we tested the proposed method in indoor environments and existing factory facilities for evaluation. In experimental results, this paper represents the performance of our system compared to the well-known LiDAR-based localization and navigation system.

ROS 기반 모바일 로봇을위한 다중 층 자율 주행 시스템 설계 (Design of Multiple Floors Autonomous Navigation System Based On ROS Enabled Mobile Robots)

  • 함디 아흐메드;장종욱
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 추계학술대회
    • /
    • pp.55-57
    • /
    • 2018
  • In Simultaneous Localization and Mapping (SLAM), the robot acquire its map of environment while simultaneously localize itself relative to the map. Now a day, a map acquired by the mobile robots limit to specific area, in an indoor environment and cannot able to navigate autonomous between different floors. We propose a design that could able to overcome this issue in order to navigate multiple floors with one end goal mission to a target destination in the course of autonomous navigation. In this research, we consider all the floors have identical structural arrangement. Internet of Things (IoT) playing crucial role in bridging between "things" and Robot Operating System (ROS) enabled mobile robots.

  • PDF

3D Global Dynamic Window Approach for Navigation of Autonomous Underwater Vehicles

  • Tusseyeva, Inara;Kim, Seong-Gon;Kim, Yong-Gi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제13권2호
    • /
    • pp.91-99
    • /
    • 2013
  • An autonomous unmanned underwater vehicle is a type of marine self-propelled robot that executes some specific mission and returns to base on completion of the task. In order to successfully execute the requested operations, the vehicle must be guided by an effective navigation algorithm that enables it to avoid obstacles and follow the best path. Architectures and principles for intelligent dynamic systems are being developed, not only in the underwater arena but also in related areas where the work does not fully justify the name. The problem of increasing the capacity of systems management is highly relevant based on the development of new methods for dynamic analysis, pattern recognition, artificial intelligence, and adaptation. Among the large variety of navigation methods that presently exist, the dynamic window approach is worth noting. It was originally presented by Fox et al. and has been implemented in indoor office robots. In this paper, the dynamic window approach is applied to the marine world by developing and extending it to manipulate vehicles in 3D marine environments. This algorithm is provided to enable efficient avoidance of obstacles and attainment of targets. Experiments conducted using the algorithm in MATLAB indicate that it is an effective obstacle avoidance approach for marine vehicles.

Vision Navigation System by Autonomous Mobile Robot

  • Shin S.Y.;Lee, J.H.;Kang H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.146.3-146
    • /
    • 2001
  • It has been integrated into several navigation systems. This paper shows that system recognizes difficult indoor roads and open area without any specific mark such as painted guide tine or tape. In this method, Robot navigates with visual sensors, which uses visual information to navigate itself along the road. An Artificial Neural Network System was used to decide where to move. It is designed with USB web camera as visual sensor.

  • PDF