• Title/Summary/Keyword: Indoor Airflow

Search Result 80, Processing Time 0.029 seconds

Ventilation Measurement with PFT in Three-storied Detached House (PFT법에 의한 수직적 3 ZONE 분할 조건에서의 환기량 측정)

  • Kim, Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.9
    • /
    • pp.506-515
    • /
    • 2013
  • The PFT (PerFluorocarbon Tracergas Technique) is of advantage to field surveys for evaluating the ventilation condition, due to its simplicity and convenience. On the other hand, it requires researchers to make some additional considerations that include uncertainties, such as the substance concentration distribution in indoor air, representativeness of a sampler, deviation of emission sources, and analysis error. In this study, the PFT and $CO_2$ tracer gas methods were applied simultaneously, to evaluate the accuracy of PFT on six ventilation conditions in the three-storied detached house. The air exchange and the outdoor air introduction a between and into zones were measured. As the results, deviations of PFT concentration distributions were observed at a sufficiently low level for an accurate determination for a house where the interior height was large, and there were relatively many partition walls. However, when a uniform airflow appeared in the indoor air, it was also validated that the indoor air would be exhausted without sufficient mixing, and consequently the measurement error of the PFT would be large.

A Study on the Variation of Airflow Velocity and Temperature upon the Design of Bio Clean Room(BCR) for Laboratory Animal Facilities by Numerical Simulation (실험동물 사육실용 바이오 크린룸(BCR)의 급기 온도 및 풍속 변화 특성에 관한 수치해석적 연구)

  • Park, Dong-Il;Chung, Kwang-Seop;Kim, Young-Il;Kim, Sung-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.7
    • /
    • pp.578-584
    • /
    • 2012
  • In this study, the analysis on the distribution of indoor airflow velocity and temperature by using numerical simulation has carried out to make fundamental data for establishing the optimum design of laboratory animal facilities. From the results, it was found that replacement of cage lacks, air supply and exhaust system, supply air temperature, supply air velocity affect to the optimum design of laboratory animal facilities as a important element.

The Individual Heat-recovery ventilation system of Residential Buildings (주거용 건물의 개별 환기시스템 필요성에 관한 연구)

  • Shin, U-Cheul;Lee, Wang-Je;Yoon, Jong-Ho;Baek, Nam-Choon
    • KIEAE Journal
    • /
    • v.14 no.6
    • /
    • pp.99-104
    • /
    • 2014
  • Recently supply of low energy house is increasing which can enhance energy efficiency and indoor environment comfort. Low energy house have to secure air tightness as well as thermal performance so house become high airtightness and inevitably need heat recovery ventilator to enhance indoor air quality. However, most of current ventilation systems are one-click, controlling the entire space so it causes increasing of heating load and fan power which makes it hard to save energy. Thus, Individual Control system is required which can achieve both enhancing indoor air quality and decreasing heating load and electric fan power. Thereby, in this study, we analyzed the correlation between ventilation and fan power through mock-up experiment and measured ventilation load under individual control system. As a result, under the condition of $24^{\circ}C$ of indoor temperature for 6 month(November to April) in Daejeon, ventilation load by fan speed was $10.9{\sim}19.6kWh/m^2{\cdot}a$ when operated 24 hours and $7.6{\sim}13.7kWh/m^2{\cdot}a$ when operated 12 hours in night time. In addition, it is possible to reduce at most 60% of ventilation load under the individual control system; measured ventilation load was $7.4kWh/m^2{\cdot}a$ when operated 24 hours, and $5.5kWh/m^2{\cdot}$ when operated 12 hours in night time.

Estimation of Indoor Environment using CFD of Multi-Purpose System with a Solar Collector -Part 1, focused on floor area and number of ventilation- (태양열온수기 적용 냉난방시스템의 CFD를 이용한 실내환경 평가 -제1보 바닥면적과 환기횟수를 중심으로-)

  • Kim, Jong-Ryeol;Choi, Kyang-Hyan
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.55-61
    • /
    • 2007
  • This paper has been conducted to estimate cooling capacity of the dehumidification tower using hot water from a solar water heating system as a energy source of regeneration process when the dehumidification and drying system is applied to room cooling. A solar water heating system was operated and indoor temperature distributions were simulated according to weather conditions when the concerned solution was used to dehumidify room air in the dehumidification tower. Through this simulation researches we found th following results ; It was found that air velocity through supply and return diffusers should be controlled because it can cause uncomfort in dwelling area. It was found that in the sunny morning temperatures of dwelling area 1 and 2 are higher than those of dwelling area 3 and 4. In this research all the calculation results of heating and cooling system supported by solar water heater have confirmed that its cooling capacity could not reach PMV 0, thermal comfort.

The Experimental Study on the Efficiency of Ventilation of Korean Paper (Hanji) (한지(韓紙)의 환기성능에 관한 실험적 연구)

  • 이종원;임정명
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.5
    • /
    • pp.482-489
    • /
    • 2004
  • The purpose of this study is to reevaluate the performance of Hanji as a architectural material. Recent studies report that one of the causes of the Sick-HouseㆍSick-Building Syndrome is due to the contaminants from interior materials and the lack of ventilation. In this study, the properties of Hanji are investigated. The major focuses of this research are (1) how efficient the Hanji is for ventilation of the house and (2) whether the usage of Hanji brings required ventilation volume to the house. According to the test results, differential pressure in the air and the amount of ventilation showed linear relationship. Test results differ from various kinds of Hanji. Since houses usually have double window system, Hanji can be used to the windows system, especially for inner part of double window system. It is suggested that the combination of Hanji windows for the inner part and glass windows for outer part is very effective, and offers a solution to improvement of indoor air quality and the lack of ventilation with passive ventilation that has less energy consumption.

The Thermal Environmental Characteristics for Task-Ambient Air-Conditioning System in Heating Condition (Task-Ambient 공조시스템의 난방시 열환경 특성에 관한 실험적 연구)

  • 이정재;윤창오;정광섭;한화택;박영철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.2
    • /
    • pp.115-121
    • /
    • 2001
  • Recently, the requirement of healthier and more comfortable environment makes the zoning domain more details. However, it has limitation to satisfy the thermal comfort of an individual because of the effect of the heat generation from the OA machine and partitions in indoor room. In this paper, we certify the validity of task-ambient air-conditioning system that has been developed as a new concept of personal air-conditioning system, and specify design strategies for more efficient task-ambient air-conditioning system with a specification guided by indoor environmental characteristics analyzed through experiment data. In this experiment, we changed the temperature and the quantity of air-flow in task domain to understand characteristic behavior of the thermal environment and investigate the possibility of energy saving. The experiment result is that the environment of the task area depends on the condition of supply air, and though the airflow of the low temperature is supplied with the ambient area, the personal environment and the efficiency of energy saving are improved by controlling the temperature and the quantity of the air shot around the task domain.

  • PDF

A Numerical Study of Automotive Indoor Thermal Comfort Model According to Boarding Conditions and Parameters Related to HVAC (HVAC 관련 매개변수 및 탑승조건에 따른 자동차 실내의 온열쾌적성 평가모델에 관한 수치해석적 연구)

  • Yoon, Seong Hyun;Park, Jun Yong;Son, Deok Young;Choi, Yunho;Park, Kyungseok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.979-988
    • /
    • 2014
  • Recently, the interest in the thermal comfort is ever increasing as the time people stay in the automobile is gradually increasing. So far, however, the cooling performance of the HVAC(heating and ventilation air conditioning) system is evaluated by thermal environment criteria such as indoor air velocity and temperature, not by a thermal comfort index. Furthermore, the precise criteria has not been established yet when the thermal comfort for the automobile is evaluated using numerical analysis. In this study, the numerical analysis of automobile indoor thermal comfort according to various parameters such as HVAC operating mode, airflow, passenger boarding conditions is performed during the HVAC system's initial operating time(20 minutes). The solar ray tracing model and S2S radiation model are used and validated to simulate an external heat source. Based on this study, an evaluation model which can predict the thermal comfort index for the combination of the above parameters is presented.

Study on Indoor Flow According to Vane Angle of Square Ceiling Type Louver Diffuser (사각 천장형 루버 디퓨저의 토출 각도에 따른 실내유동에 관한 연구)

  • Jang, Heon-Deock;Lee, Dae-Hui;Lee, Jin-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.7
    • /
    • pp.683-687
    • /
    • 2012
  • The purpose of this paper is to numerically study the characteristics of the indoor air flow of a square ceiling type diffuser according to the vane angle and flow rate. The CFX of ANSYS 13.0 was used for the CFD tool. The size of the room is $6m(X){\times}6m(Y){\times}2.7m(Z)$. The exhaust diffuser was positioned diagonally to the supply diffuser. This diffuser was designed to have many holes, so the air supply had long throw patterns with low velocity decay. The characteristics of the indoor air flow was studied at volume flow rates of 5.1 CMM and 7.4 CMM, and a vane angle from $30^{\circ}$ to $60^{\circ}$, every $10^{\circ}$.

Stationary position control of a wheeled blimp

  • Mihee Nam;Sungchul Kang;Yoon, Seong-sik;Takashi Tsubouchi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.117.4-117
    • /
    • 2002
  • This paper describes a stationary position control of a wheeled blimp. The wheeled blimp is composed of a blimp filled with helium gas and a wheeled vehicle part. The wheeled blimp is designed to enable both flying in the air and standing on the floor. The wheeled blimp stands on the floor keeping its balance. However, it is difficult for the wheeled blimp to maintain a stationary position in standing phase since the stationary blimp system responds sensitively to air current even in indoor environments. In order to keep the stationary position restraining motion caused by an uncertain airflow, a position controller for the wheeled blimp is needed. Controller design based on dynamic m...

  • PDF

A Numerical Study on the Two-Dimensional Turbulent Natural Convection Using a Low-Reynolds Number k-$\varepsilon$ Model (저레이놀즈수 k-$\varepsilon$ 모델을 사용한 2차원 자연대류 난류현상에 대한 수치적 연구)

  • 강덕홍;김우승;이관수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.741-750
    • /
    • 1995
  • The turbulent buoyancy-driven flow in 2-dimensional enclosed cavities heated from the vertical side is numerically calculated for both cases of a Rayleigh number of 5*10$^{10}$ for air and 2.5*10$^{10}$ for water. Three different turbulence models are considered : standard k-.epsilon. model of Ozoe and low-Reynolds-number model of Lam and Bremhorst, and another low-Reynolds-number model of Davidson. The results indicate that the use of low-Reynolds number models is recommended for the indoor airflow computation, and the results from Davidson model are reasonably close to the reported experimental data. A sensitivity study shows that the amounts of wall-heat transfer and the velocity profiles with the Lam and Bremhorst model largely depend on the choice of the wall function for .epsilon..