• Title/Summary/Keyword: Indoor Air Temperature

Search Result 667, Processing Time 0.027 seconds

Indoor Environmental Efficiency Indoor Garden in Apartment House during Winter (아파트 실내정원의 겨울철 실내온열환경 조절효과)

  • Kim, Jeong-Min;Choi, Yoon-Jung
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 2005.05a
    • /
    • pp.212-216
    • /
    • 2005
  • The purpose of this study is to make clear the indoor thermal environmental efficiency of indoor garden in apartment during winter. The questionnaire survey was carried out during the l0th${\sim}$20th of February 2004, respondents consisted of 215 residents living in a subject apartment estate. The field measurements of indoor thermal elements were carried out at A house with indoor garden and at B house without indoor garden. The measurements in two-subject houses were taken on simultaneously the 11th of February. As Results, the residents living in apartments with indoor garden show positive response on air moisture and satisfaction. The daily ranges of indoor temperature and globe temperature in the A house were narrower than the B house. The average relative humidity in the A house was higher and constant than the B house. Therefore, it was seemed that indoor environment during winter in the house with indoor garden maintained more constant or comfortable than the house without indoor garden by earning effect and humidity control effect of plants.

  • PDF

On-line Optimal Control Technology for Central Heating System (중앙난방시스템의 온라인 최적제어기법에 관한 연구)

  • Ahn Byung Cheon;Choi Sang Gon;Cho Sung Hwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.2
    • /
    • pp.140-146
    • /
    • 2005
  • The on-line optimal control algorithm for central heating system has been researched for minimizing energy consumption while maintaining the comfort of indoor thermal environment in terms of the environmental variables such as indoor heating load and outdoor temperature variation. This study has been done by using TRNSYS Program in order to analyze the central heating system. The optimal control algorithm shows good energy Performances in comparison with the conventional one.

Determination of Airborne Formaldehyde Using the Gas Chromatograph-Pulsed Discharge Electron Capture Detector (GC-PDECD를 이용한 공기 중 포름알데하이드의 분석)

  • 김희갑;박미진;김만구
    • Environmental Analysis Health and Toxicology
    • /
    • v.17 no.2
    • /
    • pp.117-123
    • /
    • 2002
  • A gas chromatographic method for the determination of airborne formaldehyde was established. In order to be highly detectable with the electron capture detector, formaldehyde was derivatized to its pentafluorobenzyl oxime form by reacting with O- (2,3,4,5,6- pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) at pH of 4.6 and temperature of 50$^{\circ}C$ for 1 hour. Air samples were collected into a Tedlar$\^$(R)/ bag followed by transferring into water contained in two impingers in series. Collection efficiency in the front trap was higher than 90%. Measurement of selected indoor and outdoor air samples showed higher formaldehyde concentrations in indoor air environments and the importance of ventilation for reducing indoor pollution.

IoT Based Real-Time Indoor Air Quality Monitoring Platform for a Ventilation System (청정환기장치 최적제어를 위한 IoT 기반 실시간 공기질 모니터링 플랫폼 구현)

  • Uprety, Sudan Prasad;Kim, Yoosin
    • Journal of Internet Computing and Services
    • /
    • v.21 no.6
    • /
    • pp.95-104
    • /
    • 2020
  • In this paper, we propose the real time indoor air quality monitoring and controlling platform on cloud using IoT sensor data such as PM10, PM2.5, CO2, VOCs, temperature, and humidity which has direct or indirect impact to indoor air quality. The system is connected to air ventilator to manage and optimize the indoor air quality. The proposed system has three main parts; First, IoT data collection service to measure, and collect indoor air quality in real time from IoT sensor network, Second, Big data processing pipeline to process and store the collected data on cloud platform and Finally, Big data analysis and visualization service to give real time insight of indoor air quality on mobile and web application. For the implication of the proposed system, IoT sensor kits are installed on three different public day care center where the indoor pollution can cause serious impact to the health and education of growing kids. Analyzed results are visualized on mobile and web application. The impact of ventilation system to indoor air quality is tested statistically and the result shows the proper optimization of indoor air quality.

Comparison of discharging electrodes for the electrostatic precipitator as an air filtration system in air handling units (에어핸들링 유닛의 공기정화용 전기집진기의 방전극 비교)

  • Shin, Dongho;Woo, Chang Gyu;Kim, Hak-Joon;Kim, Yong-Jin;Han, Bangwoo
    • Particle and aerosol research
    • /
    • v.13 no.1
    • /
    • pp.11-16
    • /
    • 2017
  • Indoor air quality is of increasing concern because it is closely related human health. An air handling unit (AHU) can be used to control the indoor air quality related to particulate matters and $CO_2$ as well as air conditioning such as temperature and humidity of indoor air. An electrostatic precipitator has a high collection efficiency and low pressure drop, however, ozone can possibly generate from its chargers, which is one of drawbacks to apply it for indoor air control. Here we compared four charging electrodes such as a $50{\mu}m$ tungsten wire, a $100{\mu}m$ tungsten wire, a $16{\mu}m$-thickness Al foil and a carbon fabric comprised of $5-10{\mu}m$ fibers. The carbon fabric electrode showed a superior particle collection efficiency and a lower ozone generation at a given power consumption compared to tungsten wires of 50, $100{\mu}m$ and an Al foil electrode. This low ozone generating, micro-sized electrode can be applied to the electrostatic precipitator in AHU for indoor air control.

Study on the Movement of Volatile Organic Compounds in Public Transportation (대중교통수단 객실 내 휘발성유기화합물류 거동 특성)

  • Gwak, Yoon-kyung;Lee, Jeong-Hun;Jeon, Bo-il;Yang, Ho-Hyeong;Kim, Ho-Hyun
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.2
    • /
    • pp.204-213
    • /
    • 2020
  • Objective: This study is aimed at investigating indoor air quality on public transportation (subway, train, and bus) according to changes in season and time. Methods: We evaluated TVOC and HCHO on public transportation based on the un-controlled parameters of the Ministry of Environment. We also measured temperature and humidity since they affect the concentration of TVOC and HCHO. For public transportation classification, subway lines were classified into Lines 1 to 4. Additionally, trains were classified as ITX and KTX. Results: When comparing summer and winter on public transportation, the concentrations of TVOC and HCHO did not show any particular tendency. However, the concentrations of TVOC and HCHO during traffic congestion was higher than levels during times of non-congestion on most public transportation. In summer and winter, the measurement results for temperature and humidity showed a normal range, so temperature and humidity did not affect the concentrations of TVOC and HCHO. In the case of TVOC, TVOC concentrations on new trains were found to be relatively higher than on older ones, but there was no statistically correlation. Conclusions: A survey was conducted on the indoor air quality on public transportation. This study also analyzed data based on TVOC and HCHO for designing policies and managing indoor air quality.

An Estimation on Indoor Thermal Environment by Pressurized Plenum Under Floor Air Conditioning System in Heating (난방시 가압식 바닥취출 공조방식의 실내온열환경 평가)

  • Choi, Eun-Hun;Lee, Yong-Ho;Kwon, Young-Cheol;Hwang, Jung-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.4
    • /
    • pp.92-99
    • /
    • 2010
  • The purpose of this study is to apply pressurized plenum under floor air conditioning system to office areas to understand characteristics of indoor thermal environment based on forms of diffusers. For doing this, the author conducted experiment of module measurement, and based on the results, analyzed indoor temperature distribution and velocity distribution based on direction of diffusion by using Computational Fluid Dynamics(CFD), and estimated the Predicted Mean Vote(PMV) of residents based on forms of diffusers to present the optimal air conditioning of the pressurized plenum under floor air conditioning system in heating. The results of this study are as follows. First, as for forms of diffusers, distributed diffusers rather than conical and grill diffusers were favorable in maintaining $24^{\circ}C$, the established temperature in heating, were active in velocity flowing, and were wide in a radius of diffusion. Second, as for position of pressurizing, the difference between upper and lower temperature was wider in center, lateral, and dispersed pressurizing (in order). As for velocity distribution, the velocity was more increased in lateral, center, and dispersed pressurizing(in order), indicating that dispersed pressurizing maintained uniform thermal environment. Third, as for diffusion direction, mixed direction showed less difference between upper and lower temperature and the difference in velocity between center and lateral part was 0.01m/1, indicating that it maintained uniform thermal environment. Fourth, as for the PMV of residents based on the forms of diffusers, the dispersed type showed(+) values above (0) when applied variably based on the position of diffuser, presenting thermal feeling of "being comfortable" to residents.

An Experimental Study on the Ventilation Characteristics of a Wind-Turbine Natural Ventilator According to the Outdoor-Wind Velocity and the Indoor/Outdoor-Temperature Difference (윈드터빈 자연환기 장치의 외기풍속 및 온도차에 따른 환기특성에 관한 실험연구)

  • Han, Dong-Hun;Kim, Yeong-Sik;Chung, Hanshik;Jeong, Hyomin;Choi, Soon-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.4
    • /
    • pp.175-184
    • /
    • 2017
  • With the improvement of living standards, the ventilation for the mitigation of indoor or outdoor air-pollution problems has recently attracted a lot of attention. Consequently, the ventilation for the supply of outdoor fresh air into a room is treated as an important building-design factor. The ventilation is generally divided into the forced and natural types; here, the former can control the ventilation rate by using mechanical devices, but it has the disadvantages of the equipment costs, maintenance costs, and noise generation, while the latter is applied to most workshops due to the absence of noise and the low installation and maintenance costs. In this experimental study, the ventilation performance of a typical rotating-type natural ventilator, which is called a "wind turbine," was investigated with the outdoor-wind velocity and the indoor/outdoor-temperature difference. From the experiment results, it was confirmed that the temperature difference of $10^{\circ}C$ corresponds to the ventilation driving force with an outdoor-wind velocity of 1.0 m/s. Additionally, the intake-opening area of a building also exerts a great effect on the ventilation rates.

Assessment of Indoor Air Quality in Commercial Office Buildings (업무용 빌딩 내 사무실의 실내공기질 평가)

  • Jeong, Jee Yeon;Lee, Byung Kyu;Phee, Young Gyu
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.17 no.1
    • /
    • pp.31-42
    • /
    • 2007
  • Recently, concerns regarding indoor air quality in offices have continued to increase. Thirty offices in five metropolitan commercial buildings were surveyed from February to April 2004. Sampling was performed during normal business hours. Thermal comfort factors such as temperature and relative humidity, carbon dioxide ($CO_2$), carbon monoxide (CO), formaldehyde (HCHO), respirable dust, $PM_{10}$ were sampled and analyzed to determine the mean, standard deviation, range, and correlation for each of those parameters. The data was then compared to office as standard of Ministry of Labor, and guideline applicable to the indoor environment. The results represented that the temperature was slightly higher than the standard of American Society of Refrigerating and Air-Conditioning Engineers (ASHRAE), the relative humidity was lower that the standard of ASHRAE. The range of the 8-TWA concentration of $CO_2$ was 639 ~ 786 ppm, but 33.3% of the total thirty offices exceeded the 1000 ppm as ceiling concentration. The concentration of CO was less than 3 ppm, which was similar to that of offices in Japanese. The mean concentration of formaldehyde was 0.032 ppm, and only 2 % of total samples (193) exceeded the 0.1 ppm, standard of formaldehyde in office air. The concentration of respirable dust and $PM_{10}$ was not exceeded the standard of those parameters, $150{\mu}g/m^3$. The concentration of those parameters in the office air was statistically correlated.

A Study on the Estimations of the Indoor Natural Temperature in the Underground Space (지중공간(地中空間)의 자연실온(自然室溫) 추정(推定)에 관(關)한 연구(硏究))

  • Lee, Shi Woong;Shon, Jang Yeul
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.3
    • /
    • pp.249-256
    • /
    • 1988
  • The purpose of this paper is to research the estimations of the indoor natural temperature in a case of the earth sheltered space and the 1st basement room in comparison with a conventional housing. The result of this study can be summerized as follows: The natural temperature of the earth sheltered house Summer : $${\theta}es=27.0+1.65sin(2{\pi}/24{\cdot}T-1.34)$$ Winter : $${\theta}ew=11.5+1.15sin(2{\pi}/24{\cdot}T-1.61)$$ The natural temperature of the 1st basement space Summer : $${\theta}us=25.5+1.00sin(2{\pi}/24{\cdot}T-1.72)$$ Winter : $${\theta}uw=13.9+1.10sin(2{\pi}/24{\cdot}T-2.29)$$ From the results of the stated above, we can calculate the cooling and heating load in the earth sheltered house and the underground space exactly and easily at Taejeon City.

  • PDF