• 제목/요약/키워드: Indoor Air Quality Monitoring

검색결과 90건 처리시간 0.026초

환기가 불량한 실내공간에서, 담배연기에 의한 CO, $CO_2$, TVOC 및 에어로졸의 변화 (Changes of CO, $CO_2$, TVOC and Aerosol of Tobacco Smoke in a Poorly-Ventilated Indoor)

  • 한돈희;박수진;류지혜
    • 한국환경보건학회지
    • /
    • 제32권2호
    • /
    • pp.132-139
    • /
    • 2006
  • Number of aerosol, CO, $CO_2$ and TVOC after one-, two-, three-cigarettes smoking were monitored with time every 10 minute for 180 minutes in the seminar room (volume $51.1m^3$) when poorly-ventilated. IAQ monitor (IAQRAE, model PGM-5210) and PortCount (TSI, model 8020) were used for monitoring. Aerosol was decreased with exponential decay equation and it was estimated that number of aerosol would be long suspended (one cigarette 75/cc. two cigarettes 66/cc, three cigarettes 141/cc by 8hrs after smoking). While CO was also decreased with exponential or linear decay equation and correlated with number of aerosol strongly, TVOC and $CO_2$ were increased with linear equation in accordance with time lag. Most of TVOC and $CO_2$ were above standard levels of Korean Indoor Air Quality (Ministry of Environment) without regarding number of cigarettes. When naturally ventilated, all of CO, $CO_2$ and TVOC concentrations were dramatically decreased below standard levels of Korean Indoor Air Quality.

지하철 역사 실내 공기질 관리를 위한 실용적 PM10 실시간 예측 (A Practical Approach to the Real Time Prediction of PM10 for the Management of Indoor Air Quality in Subway Stations)

  • 정갑주;이근영
    • 전기학회논문지
    • /
    • 제65권12호
    • /
    • pp.2075-2083
    • /
    • 2016
  • The real time IAQ (Indoor Air Quality) management is very important for large buildings and underground facilities such as subways because poor IAQ is immediately harmful to human health. Such IAQ management requires monitoring, prediction and control in an integrated and real time manner. In this paper, we present three PM10 hourly prediction models for such realtime IAQ management as both Multiple Linear Regression (MLR) and Artificial Neural Network (ANN) models. Both MLR and ANN models show good performances between 0.76 and 0.88 with respect to R (correlation coefficient) between the measured and predicted values, but the MLR models outperform the corresponding ANN models with respect to RMSE (root mean square error).

산화물 반도체를 이용한 실내 공기질 가스 센서 연구동향 (Recent Research Trend in Oxide Semiconductor Gas Sensors for Indoor Air Quality Monitoring)

  • 이건호;이종흔
    • 공업화학전망
    • /
    • 제23권3호
    • /
    • pp.32-41
    • /
    • 2020
  • 사람들은 대부분의 시간을 실내에서 보내고 있으며, 실내에 존재하는 유해가스는 미량의 농도에도 불구하고 심각한 질환을 일으킬 수 있다. 금속산화물 반도체 가스센서는 감도가 우수하고, 구조가 간단하며, 초소형화가 가능한 장점이 있어 고가의 대형 장비를 사용하지 않고 실내 유해가스를 측정하는 데 효과적으로 이용될 수 있다. 본 기고문에서는 금속산화물 반도체를 이용한 가스 센서의 검지 원리를 고찰하고, 나노 구조 조절, 마이크로 리액터 및 이중층 구조를 이용한 가스 개질 등 실내 유해가스 측정을 위한 다양한 센서 설계방법을 소개하고자 한다.

보건의료시설의 실내 예상 평균 온열감(PMV), 이산화탄소 농도, 소음도, 조도의 통합실내쾌적도(IEQh)를 통한 연간 실내 쾌적도 평가 (Evaluation of Annual Indoor Environment Quality in Hospitals using Various Comfort-related Factors)

  • 이보람;이대엽;반현경;이세원;김규상;이기영
    • 한국환경보건학회지
    • /
    • 제43권3호
    • /
    • pp.214-222
    • /
    • 2017
  • Objectives: A hospital is a complex building that serves many different purposes. The indoor environment in a hospital plays a major role in patient well-being and the work efficiency of the hospital staff. This study was conducted to evaluate overall comfort in two major hospitals over the course of one year. Methods: Various indoor environmental conditions were measured in two general hospitals for one year (April 2014 to April 2015). Monitoring alternated between the hospitals at one month per respective monitoring session. The indoor air temperature, relative humidity (RH), mean radiant temperature and air velocity were measured in order to calculate the predicted mean vote (PMV). Carbon dioxide concentration, noise level and illumination level were concurrently measured and applied to the overall IEQ acceptance model for the hospitals (IEQh). Results: The IEQh at the two general hospitals was different at five spaces within a building. The IEQh for summer and winter were significantly different. Real-time IEQh demonstrated that indoor comfort was affected by the hospital's operating hours due to operation of the HVAC system. The percentage of indoor comfort in the hospitals was higher using PMV than IEQh. Conclusion: IEQh in the hospitals was different at locations with different purposes. Indoor comfort assessment using IEQh was stricter than with PMV. Additional research is needed in order to optimize the IEQh model.

실내거주자 건강 관리를 위한 IoT기반 실내정원용 IAQ지수 개발 (Development of an IAQ Index for Indoor Garden Based IoT Applications for Residents' Health Management)

  • 이정훈;안선민;곽민정;김광진;김호현
    • 한국환경보건학회지
    • /
    • 제44권5호
    • /
    • pp.421-432
    • /
    • 2018
  • Objectives: In this study, we started to develop an indoor garden integrated IoT solution based on IAQ (indoor air quality) and interconnection with an environmental database for smart management of indoor gardens. The purpose of this study was to develop and apply an integrated solution for customized air purification from an indoor garden through big data analysis using IoT technology. Methods: An IoT-based IAQ monitoring system was established in three households within a new apartment building. Based on real-time and long-term data collected, $PM_{2.5}$, $CO_2$, temperature, and humidity changes were compared to those of indoor garden applications and the analyzed results were indexed. Results As a result of the installation, all three households had no results exceeding the standard for indoor air pollution on average $PM_{2.5}$ and $CO_2$ indices. In the case of indoor garden installation, the IAQ index increased to the "Good" section after the installation, and readings in the "Bad" section shown before the installation disappeared. The comfort index also did not dip into the "Uncomfortable" section, where it had been preinstallation, and significantly lowered the average score from "Uncomfortable for sensitive groups" to "Good". Overall, the IAQ composite index for the generation of installations decreased the "Good" interval, but "Bad" did not appear. Conclusions In this study on developing an integrated solution for IAQ based on IoT indoor gardens, big data was analyzed to determine IAQ and comfort indexes and an IAQ composite index. Through this process, it became understood that it is necessary to monitor IAQ based on IoT.

이동형 실내 공기질 측정 로봇 (Mobile Robot for Indoor Air Quality Monitoring)

  • 이소화;고동진;김나빈;박은서;전동렬;봉재환
    • 한국전자통신학회논문지
    • /
    • 제17권3호
    • /
    • pp.537-542
    • /
    • 2022
  • 실내 공기질에 관한 관심과 중요성이 커지고 있으나 현재의 고정된 장비를 이용한 실내 공기질 측정 방법에는 한계가 있다. 본 논문에서는 이동 중 요철에 의한 진동을 최소화하여 탑재된 센서를 보호하기 위해 소형 다족형 로봇에 공기질 측정 장비를 탑재하여 이동형 공기질 측정 로봇을 개발하였다. 개발한 이동형 공기질 측정 로봇은 간단한 보행 메커니즘을 활용하여 DC 모터 두 개의 정회전과 역회전 조합만으로 로봇의 전진, 후진, 좌우 선회가 가능하다. 로봇의 보행이나 보행 궤적을 제어하기 위해 복잡한 연산이 필요치 않고 하나의 아두이노를 사용해 로봇의 보행 제어 및 다양한 공기질 측정 장비의 데이터 획득과 전송을 할 수 있었다. 로봇 전장부의 소모 전력이 낮아 비교적 저용량의 배터리를 탑재하여 배터리로 인한 무게를 줄일 수 있었다. 개발한 로봇은 몸통에 배터리와 모터를 포함하여 다양한 공기질 측정 장비를 탑재하고 1.4kg의 무게를 가지며, 보행 및 선회 속도는 3.75cm/sec와 14.13rad/sec로 측정되었다. 다리의 최대 수직 도달 높이는 33mm였으나, 요철은 최대 24mm 높이까지 극복할 수 있었다.

휴대용 실내 미세먼지 농도 측정 장치 개발 (Development of a portable system for monitoring indoor particulate matter concentration)

  • 김유진;최현슬;고태식
    • 한국가시화정보학회지
    • /
    • 제20권1호
    • /
    • pp.45-51
    • /
    • 2022
  • Airborne particulate matter(PM) has been a global environmental problem. PM whose diameter is smaller than 10 ㎛ can permeate respiratory organs and has harmful effects on human health. Therefore, PM monitoring systems are necessary for management of PM and prevention of PM-induced negative effects. Conventional PM monitoring techniques are expensive and cumbersome to handle. In the present study, two types of PM monitoring devices were designed for measuring indoor PM concentration, portably. We experimentally investigated the performance of three commercial PM concentration measurement sensors in a closed test chamber. As a result, PM2008 sensor showed the best PM concentration measurement accuracy. Linear regression method was applied to convert PM concentration value acquired from PM2008 sensor into ground truth value. A mobile application(app.) was also created for users to check the PM concentration, easily. The mobile app. also provides safety alarm when the PM10 concentration exceeds 81 ㎛/m3. The developed hand-held system enables the facile monitoring of surrounding air quality.

간접흡연의 정량적 노출측정 방법의 고찰 (Review of Various Quantitative Methods to Measure Secondhand Smoke)

  • 임수길;김정윤;임완령;손홍지;이기영
    • 한국환경보건학회지
    • /
    • 제35권2호
    • /
    • pp.100-115
    • /
    • 2009
  • Secondhand smoke (SHS) is one of major public health threats. Since secondhand smoke is complex mixture of toxic chemicals, there has been no standardized method to measure SHS quantitatively. The purpose of this manuscript was to review various quantitative methods to measure SHS. There are two different methods: air monitoring and biological monitoring. Air monitoring methods include exhaled carbon monoxide level, ambient fine particulates, nicotine and 3-ethenylpyridine. Measurement of fine particulates has been utilized due to presence of real-time monitor, while fine particulates can have multiple indoor sources other than SHS. Ambient nicotine and 3-EP are more specific to SHS, although there is no real-time monitor for these chemicals. Biological monitoring methods include nicotine in hair, cotinine in urine, NNK in urine and DNA adducts. Nicotine in hair can provide chronic internal dose, while cotinine in urine can provide acute dose. Since biological monitoring can provide total internal dose, identification of specific exposure source may be difficult. NNK in urine can indicate carcinogenicity of the SHS exposure. DNA adducts can provide overall cancer causing exposure, but not specific to SHS. While there are many quantitative methods to measure SHS, selection of appropriate method should be based on purposes of assessment. Application of accurate and appropriate exposure assessment method is important for understanding health effects and establishing appropriate control measures.

수도권 전동차 객실 $CO_2$농도관측을 통한 자연환기효과 해석 (Analysis of Natural Ventilation Effect of Seoul Metropolitan Subway by Monitoring Indoor $CO_2$ Concentrations)

  • 권순박;조영민;박덕신;박은영;김세영;정미영
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.965-968
    • /
    • 2007
  • Two major parameters, i.e. carbon dioxide ($CO_2$) and particulate matters smaller than $10{\mu}m\;(PM_{10})$, were selected as the index pollutants in managing indoor air quality. The former pollutant, $CO_2$, is the index that shows the ventilation status and is exhaled by passengers when they breathe in train or subway. It is generally known that high $CO_2$ concentration in the vehicle may be decreased by insufficient air-tightening vehicle bodies and the air is ventilated when vehicles stop at the station and doors open. However, there is no established proof or quantitatively identified data on how much the $CO_2$ concentration is reduced when ventilation is done while doors are opened. In this study, $CO_2$ concentrations were measured in 6 lines of Korail and one line of Seoul Metro subway linesand a theoretical approach was takento predict the changing trend of $CO_2$ concentrations during the operation of vehicle by using $CO_2$ dilution factor through natural ventilation. As a result, the change could be quantified and it was found that app. 35% of indoor $CO_2$ was removed through natural ventilation.

  • PDF

소방서 실내공간의 화학적 유해인자 2차노출과 실내공기질 특성 (Characterization of Secondary Exposure to Chemicals and Indoor Air Quality in Fire Station)

  • 김수진;함승헌;전정석;김원
    • 한국화재소방학회논문지
    • /
    • 제33권4호
    • /
    • pp.140-151
    • /
    • 2019
  • 본 연구에서는 소방관들이 화재현장에서 복귀 후 소방청사 내에서 2차적으로 노출된 화학적 유해물질의 실내공기질을 평가하였다. 서울시에 소재한 4개 소방서를 선정하였고, 그 중 2개 소방서는 실제 화재현장에서 소방활동 종료 귀소 후에, 다른 2개 소방서는 대조군으로 설정하여 출동과 상관없이 평소 수준의 실내공기질을 측정하였다. 소방안전지도 전산시스템을 이용하여 서울시에서 발생하는 모든 화재사고에 대하여 24시간 모니터링을 실시하였고 중급규모 이상의 사고에서 실험군이 출동하게 되는 경우 귀소 후 바로 실내공기질을 측정하였다. 11개 유해물질 항목(미세먼지, 포름알데히드, 휘발성유기화합물, PAH, VCM, 산류, 석면, CO, CO2, NO2, O3)을 공정시험법에 따라 측정하였다. 유해물질 11종 중 3종이 국내·외 기준을 초과하였고 1종은 국외기준에 육박하는 것으로 확인되었다. 특히 총휘발성 유기화합물, 이산화탄소, 황산은 각 2.5배, 2.2배, 1.1배가 환경부 및 고용노동부 기준보다 높았다. 또한, 포름알데히드와 황산의 경우, 실험군보다 대조군에서 더 높게 측정되었다. 본 연구결과는 서울특별시 소방청사 내 실내공기질 개선 정책에 활용될 수 있을 것이다.