Recent Research Trend in Oxide Semiconductor Gas Sensors for Indoor Air Quality Monitoring

산화물 반도체를 이용한 실내 공기질 가스 센서 연구동향

  • Lee, Kun Ho (Department of material science and engineering, Korea University) ;
  • Lee, Jong-Heun (Department of material science and engineering, Korea University)
  • 이건호 (고려대학교 신소재공학과) ;
  • 이종흔 (고려대학교 신소재공학과)
  • Published : 2020.06.30

Abstract

사람들은 대부분의 시간을 실내에서 보내고 있으며, 실내에 존재하는 유해가스는 미량의 농도에도 불구하고 심각한 질환을 일으킬 수 있다. 금속산화물 반도체 가스센서는 감도가 우수하고, 구조가 간단하며, 초소형화가 가능한 장점이 있어 고가의 대형 장비를 사용하지 않고 실내 유해가스를 측정하는 데 효과적으로 이용될 수 있다. 본 기고문에서는 금속산화물 반도체를 이용한 가스 센서의 검지 원리를 고찰하고, 나노 구조 조절, 마이크로 리액터 및 이중층 구조를 이용한 가스 개질 등 실내 유해가스 측정을 위한 다양한 센서 설계방법을 소개하고자 한다.

Keywords

References

  1. WHO, Household Air Pollution and Health, 2018.
  2. H.-J. Kim and J.-H. Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview, Sens. Actuators B, 192, 607-627 (2014). https://doi.org/10.1016/j.snb.2013.11.005
  3. E. Comini, G. Faglia, G. Sberveglieri, Z. Pan, and Z. L. Wang, Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts, Appl. Phys. Lett., 81, 1869-1871 (2002). https://doi.org/10.1063/1.1504867
  4. A. Kolmakov, Y. Zhang, G. Cheng, and M. Moskovits, Detection of CO and O2 using tin oxide nanowire sensors, Adv. Mater., 15, 997-1000 (2003). https://doi.org/10.1002/adma.200304889
  5. Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors, Appl. Phys. Lett., 84, 3654-3656 (2004). https://doi.org/10.1063/1.1738932
  6. Z. Jing and J. Zhan, Fabrication and gas-sensing properties of porous ZnO nanoplates, Adv. Mater., 20, 4547-4551 (2008). https://doi.org/10.1002/adma.200800243
  7. D. Zhang, Z. Liu, C. Li, T. Tang, X. Liu, S. Han, B. Lei, and C. Zhou, Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices, Nano Lett., 4, 1919-1924 (2004). https://doi.org/10.1021/nl0489283
  8. C. Li, D. Zhang, X. Liu, S. Han, T. Tang, J. Han, and C. Zhou, In2O3 nanowires as chemical sensors, Appl. Phys. Lett., 82, 1613-1615 (2003). https://doi.org/10.1063/1.1559438
  9. Y. H. Cho, Y. C. Kang, and J.-H. Lee, Highly selective and sensitive detection of trimethylamine using WO3 hollow spheres prepared by ultrasonic spray pyrolysis, Sens. Actuators B, 176, 971-977 (2013). https://doi.org/10.1016/j.snb.2012.10.044
  10. J.-S. Kim, J.-W. Yoon, Y. J. Hong, Y. C. Kang, F. Abdel-Hady, A. A. Wazzan, and J.-H. Lee, Highly sensitive and selective detection of ppb-level NO2 using multi-shelled WO3 yolk-shell spheres, Sens. Actuators B, 229, 561-569 (2016). https://doi.org/10.1016/j.snb.2016.02.003
  11. Y. H. Cho, Y. N. Ko, Y. C. Kang, I.-D. Kim, and J.-H. Lee, Ultraselective and ultrasensitive detection of trimethylamine using MoO3 nanoplates prepared by ultrasonic spray pyrolysis, Sens. Actuators B, 195, 189-196 (2014). https://doi.org/10.1016/j.snb.2014.01.021
  12. S. Yang, Y. Liu, W. Chen, W. Jin, J. Zhou, H. Zhang, and G. S. Zakharova, High sensitivity and good selectivity of ultralong MoO3 nanobelts for trimethylamine gas, Sens. Actuators B, 226, 478-485 (2016). https://doi.org/10.1016/j.snb.2015.12.005
  13. H.-J. Kim, K.-I. Choi, A. Pan, I.-D. Kim, H.-R. Kim, K.-M. Kim, C. W. Na, G. Cao, and J.-H. Lee, Template-free solvothermal synthesis of hollow hematite spheres and their applications in gas sensors and Li-ion batteries, J. Mater. Chem., 21, 6549-6555 (2011). https://doi.org/10.1039/c0jm03516e
  14. J. Chen, L. Xu, W. Li, and X. Gou, α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications, Adv. Mater., 17, 582-586 (2005). https://doi.org/10.1002/adma.200401101
  15. P. Wu, J. H. Sun, Y. Y. Huang, G. F. Gu, and D. G. Tong, Solution plasma synthesized nickel oxide nanoflowers: An effective NO2 sensor, Mater. Lett., 82, 191-194 (2012). https://doi.org/10.1016/j.matlet.2012.05.087
  16. N. G. Cho, I.-S. Hwang, H.-G. Kim, J.-H. Lee, and I.-D. Kim, Gas sensing properties of p-type hollow NiO hemispheres prepared by polymeric colloidal templating method, Sens. Actuators B, 155, 366-371 (2011). https://doi.org/10.1016/j.snb.2010.12.031
  17. Y.-S. Kim, I.-S. Hwang, S.-J. Kim, C.-Y. Lee, and J.-H. Lee, Cuo nanowire gas sensors for air quality control in automotive cabin, Sens. Actuators B, 135, 298-303 (2008). https://doi.org/10.1016/j.snb.2008.08.026
  18. H. J. Park, N.-J. Choi, H. Kang, M. Y. Jung, J. W. Park, K. H. Park, and D.-S. Lee, A ppb-level formaldehyde gas sensor based on CuO nanocubes prepared using a polyol process, Sens. Actuators B, 203, 282-288 (2014). https://doi.org/10.1016/j.snb.2014.06.118
  19. Q. Jiao, M. Fu, C. You, Y. Zhao, and H. Li, Preparation of hollow Co3O4 microspheres and their ethanol sensing properties, Inorg. Chem., 51, 11513-11520 (2012). https://doi.org/10.1021/ic3013602
  20. Y. Liu, G. Zhu, B. Ge, H. Zhou, A. Yuan, and X. Shen, Concave Co3O4 octahedral mesocrystal: Polymer-mediated synthesis and sensing properties, Cryst. Eng. Comm., 14, 6264-6270 (2012). https://doi.org/10.1039/c2ce25788b
  21. D. N. Suryawanshi, D. R. Patil, and L. A. Patil, Fe2O3-activated Cr2O3 thick films as temperature dependent gas sensors, Sens. Actuators B, 134, 579-584 (2008). https://doi.org/10.1016/j.snb.2008.05.045
  22. R. C. Singh, N. Kohli, M. P. Singh, and O. Singh, Ethanol and LPG sensing characteristics of SnO2 activated Cr2O3 thick film sensor, Bull. Mater. Sci., 33, 575-579 (2010). https://doi.org/10.1007/s12034-010-0088-7
  23. C. W. Na, S.-Y. Park, J.-H. Chung, and J.-H. Lee, Transformation of ZnO nanobelts into single-crystalline Mn3O4 nanowires, ACS Appl. Mater. Interfaces, 4, 6565-6572 (2012). https://doi.org/10.1021/am301670x
  24. I. Kortidis, H. C. Swart, S. S. Ray, and D. E. Motaung, Characteristics of point defects on the room temperature ferromagnetic and highly NO2 selectivity gas sensing of p-type Mn3O4 nanorods, Sens. Actuators B, 285, 92-107 (2019). https://doi.org/10.1016/j.snb.2019.01.007
  25. K.-I. Choi, H.-R. Kim, and J.-H. Lee, Enhanced CO sensing characteristics of hierarchical and hollow In2O3 microspheres, Sens. Actuators B, 138, 497-503 (2009). https://doi.org/10.1016/j.snb.2009.02.016
  26. D. Zhang, Y. Sun, C. Jiang, Y. Yao, D. Wang, and Y. Zhang, Room-temperature highly sensitive CO gas sensor based on Ag-loaded zinc oxide/molybdenum disulfide ternary nanocomposite and its sensing properties, Sens. Actuators B, 253, 1120-1128 (2017). https://doi.org/10.1016/j.snb.2017.07.173
  27. D. Zhang, Z. Wu, and Y. Cao, Cobalt-doped indium oxide/molybdenum disulfide ternary nanocomposite toward carbon monoxide gas sensing, Sens. Actuators B, 777, 443-453 (2019).
  28. H.-R. Kim, K.-I. Choi, K.-M. Kim, I.-D. Kim, G. Cao, and J.-H. Lee, Ultra-fast responding and recovering C2H5OH sensors using SnO2 hollow spheres preparedand activated by Ni templates, Chem. Comm., 46, 5061-5063 (2010). https://doi.org/10.1039/c0cc00213e
  29. S.-J. Kim, I.-S. Hwang, J.-K. Choi, Y. C. Kang, and J.-H. Lee, Enhanced C2H5OH sensing characteristics of nano-porous In2O3 hollow spheres prepared by sucrose-mediated hydrothermal reaction, Sens. Actuators B, 155, 512-518 (2011). https://doi.org/10.1016/j.snb.2010.12.055
  30. S.-J. Hwang, K.-I. Choi, J.-W. Yoon, Y. C. Kang, and J.-H. Lee, Pure and Pd-loaded Co3O4 hollow hierarchical nanostructures with giant and ultraselective chemiresistivity to xylene and toluene, Chem. A. Eur. J., 21, 5872-5878 (2015). https://doi.org/10.1002/chem.201405076
  31. O. Bunkoed, F. Davis, P. Kanatharana, P. Thavarungkul, and S. P. J. Higson, Sol-gel based sensor for selective formaldehyde determination, Anal. Chim. Acta, 659, 251-257 (2010). https://doi.org/10.1016/j.aca.2009.11.034
  32. Agency for Toxic Substances and Disease Registry (ATSDR).
  33. J. A. Kemmler, S. Pokhrel, J. Birkenstock, M. Schowalter, A. Rosenauer, N. Barsan, U. Weimar, and L. Madler, Quenched, nanocrystalline In4Sn3O12 high temperature phase for gas sensing applications, Sens. Actuators B, 161, 740-747 (2012). https://doi.org/10.1016/j.snb.2011.11.026
  34. F. Fang, L. Bai, H. Sun, Y. Kuang, X. Sun, T. Shi, D. Song, P. Guo, H. Yang, Z. Zhang, Y. Wang, J. Luo, and J. Zhu, Hierarchically porous indium oxide nanolamellas with ten-parts-per-billion-level formaldehyde-sensing performance, Sens. Actuators B, 206, 714-720 (2015). https://doi.org/10.1016/j.snb.2014.09.020
  35. P. Lv, Z. Tang, G. Wei, J. Yu, and Z. Huang, Recognizing indoor formaldehyde in binary gas mixtures with a micro gas sensor array and a neural network, Maes. Sci. Technol., 18, 2997-3004 (2007). https://doi.org/10.1088/0957-0233/18/9/034
  36. T. Itoh, I. Matsubara, W. Shin, N. Izu, and M. Nishibori, Preparation of layered organic-inorganic nanohybrid thin films of molybdenum trioxide with polyaniline derivatives for aldehyde gases sensors of several tens ppb level, Sens. Actuators B, 128, 512-520 (2008). https://doi.org/10.1016/j.snb.2007.07.059
  37. X. Gou, G. Wang, X. Kong, D. Wexler, J. Horvat, J. Yang, and J. Park, Flutelike porous hematite nanorods and branched nanostructures: Synthesis, characterisation and application for gas sensing, Chem.-Eur. J., 14, 5996-6002 (2008). https://doi.org/10.1002/chem.200701705
  38. A. T. Guntner, S. Abegg, K. Wegner, and S. E. Pratsinis, Zeolite membranes for highly selective formaldehyde sensors, Sens. Acutators B, 257, 916-923 (2018). https://doi.org/10.1016/j.snb.2017.11.035
  39. H. Tian, H. Fan, M. Li, and L. Ma, Zeolitic imidazolate framework coated ZnO nanorods as molecular sieving to improve selectivity of formaldehyde gas sensor, ACS Sens., 1, 243-250 (2016). https://doi.org/10.1021/acssensors.5b00236
  40. M. Iwamoto, Y. Yoda, N. Yamazoe, and T. Seiyama, Study of metal oxide catalysts by temperature programmed desoption. 4. Oxygen adsorption on various metal oxides, J. Phys. Chem., 82, 2564-2570 (1978). https://doi.org/10.1021/j100513a006
  41. K. H. Lee, B.-Y. Kim, J.-W. Yoon, J.-H. Lee, Extremely selective detection of ppb levels of indoor xylene using CoCr2O4 hollow spheres activated by Pt doping, Chem. Comm., 55, 751-754 (2019). https://doi.org/10.1039/C8CC08186G
  42. Y. J. Hong, J.-W. Yoon, J.-H. Lee, and Y. C. Kang, One-pot synthesis of Pd-loaded SnO2 yolk-shell nanostructures for ultraselective methyl benzene sensors, Chem. A. Eur. J., 20, 2737-2741 (2014). https://doi.org/10.1002/chem.201304502
  43. B.-Y. Kim, J.-W. Yoon, J. K. Kim, Y. C. Kang, and J.-H. Lee, Dual role of multiroom-structured Sn-doped NiO microspheres for ultrasensitive and highly selective detection of xylene, ACS Appl. Mater. Interfaces, 10, 16605-16612 (2018). https://doi.org/10.1021/acsami.8b02412
  44. J.-W. Yoon, Y. J. Hong, G. D. Park, S.-J. Hwang, F. Abdel-Hady, A. A. Wazzan, Y. C. Kang, and J.-H. Lee, Kilogram-scale synthesis of Pd-loaded quintuple-shelled Co3O4 microreactors and their applications to ultrasensitive and ultraselective detection of methylbenzenes, ACS Appl. Mater. Interfaces, 7, 7717-7723 (2015). https://doi.org/10.1021/acsami.5b00706
  45. H.-M. Jeong, J.-H. Kim, S.-Y. Jeong, C.-H. Kwak, and J.-H. Lee, Co3O4-SnO2 hollow hetero-nanostructures: Facile control of gas selectivity by compositional tuning of sensing materials via galvanic replacement, ACS Appl. Mater. Interfaces, 8, 7877-7883 (2016). https://doi.org/10.1021/acsami.6b00216
  46. H.-M. Jeong, S.-Y. Jeong, J.-H. Kim, B.-Y. Kim, J.-S. Kim, F. Abdel-Hady, A. A. Wazzan, H. A. Al-turaif, H. W. Jang, and J.-H. Lee, Gas selectivity control in Co3O4 sensor via concurrent tuning of gas reforming and gas filtering using nano-scale hetero-overlayer of catalytic oxides, ACS Appl. Mater. Intefces, 9, 41397-41404 (2017). https://doi.org/10.1021/acsami.7b13998
  47. S.-Y. Jeong, J.-W. Yoon, T.-H. Kim, H.-M. Jeong, C.-S. Lee, Y. C. Kang, and J.-H. Lee, Ultra-selective detection of sub-ppm-level benzene using Pd-SnO2 yolk-shell micro-reactors with a catalytic Co3O4 overlayer for monitoring air quality, J. Mater. Chem. A, 5, 1446-1454 (2017). https://doi.org/10.1039/C6TA09397C
  48. Y. K. Moon, S.-Y. Jeong, U. C. Kang, and J.-H. Lee, Metal oxide gas sensors with Au nanocluster catalytic overlayer: Toward tuning gas selectivity and response using a novel bilayer sensor design, ACS Appl. Mater. Interfaces, 11, 32169-32177 (2019). https://doi.org/10.1021/acsami.9b11079
  49. S.-Y. Jeong, Y. K. Moon, T.-H. Kim, S.-W. Park, K. B. Kim, Y. C. Kang, and J.-H. Lee, A new strategy for detecting plant hormone ethylene using oxide semiconductor chemiresistors: Exceptional gas selectivity and response tailored by nanoscale Cr2O3 catalytic overlayer, Adv. Sci., 2, 1903093 (2020).