• 제목/요약/키워드: Indoor/Outdoor concentration

검색결과 187건 처리시간 0.022초

초등학교 실내외 미세먼지 농도 비교 연구 (A Comparative Study on Concentrations of Indoor and Outdoor Particulate Matters in Elementary Schools)

  • 김대현;손윤석;이태정;조영민
    • 대한원격탐사학회지
    • /
    • 제36권6_3호
    • /
    • pp.1721-1732
    • /
    • 2020
  • 초등학생들은 학교에서 많은 시간을 보내고 있으며 실내 공기오염에 더 많이 노출된다. 또한 초등학생들은 신체적으로 성장기에 있으며 어른에 비해 단위체중당 호흡량이 많으므로 실내 공기오염에 대한 민감도가 큰 것으로 알려져 있다. 따라서 학교 실내공기질은 초등학생들의 건강을 위한 중요한 요소이다. 본 연구에서는 서울지역 5개 초등학교에서 측정한 실내외 미세먼지 (Particulate matter: PM) 농도를 이용하여 상관분석을 실시하였다. 이를 통해 실외 PM이 실내 PM에 미치는 영향을 평가하였다. 또한 PM ratio, I/O ratio 등과 같은 통계분석을 진행하였다. 그 결과 초등학교의 실내외 PM의 상관성은 PM10보다 PM2.5와 PM1에서 더 유의미하게 나타났다. Indoor/outdoor (I/O) ratio의 경우 PM10에서 SD를 제외한 4개 초등학교에서 모두 1보다 높게 나타났다 (BB: 2.21, NS: 1.67, IS: 1.73, SI: 1.17). 이는 실내 학생의 활동도가 PM10의 농도에 큰 영향을 미친다는 것을 의미한다.

고속버스 운행시 공조시스템 조건에 따른 객실 내 실내공기질 변화 (A study on the effect on indoor air quality by ventilation system operation in buses)

  • 안선민;이정섭;심인근;김호현
    • 실내환경 및 냄새 학회지
    • /
    • 제17권4호
    • /
    • pp.346-354
    • /
    • 2018
  • In this study, the condition of the hazardous materials in the bus was monitored according to the ventilation mode of the air conditioning system during bus service. The bus was surveyed using the indoor air quality measurement method of public transportation vehicles within one year of delivery. We evaluate the $CO_2$ and $PM_{10}$, which are the controlled parameters in buses by the Ministry of Environment, and VOCs and HCHO, the non-controlled parameters. The $PM_{10}$ concentration increased due to outdoor air intake; however the $CO_2$ concentration was found to decrease. In addition, the concentration of VOCs and HCHO was found to decrease due to the forced ventilation system and the outdoor air intake. These results show that the concentration of the other materials except $PM_{10}$ can be changed due to the outside air concentration and forced ventilation system. Therefore, through indoor air quality characteristics of the bus according to air condition system are intended to be used as the basis of an operation manual.

공단지역 일부 주민들의 주택유형 및 실내/외에 따른 VOCs(Benzene, Toluene, Xylene) 농도 및 상관성에 관한 연구 (A Study on the Correlation and Concentration in Volatile Organic Compounds(Benzene, Toluene, Xylene) Levels According to the Indoor/Outdoor and the Type of Residents' House in Industrial Area)

  • 이치원;전혜리;홍은주;유승도;김대선;손부순
    • 한국환경보건학회지
    • /
    • 제36권5호
    • /
    • pp.351-359
    • /
    • 2010
  • The objectives of this study were to understand the characteristics of residents in industrial areas and factors affecting exposure to the Volatile Organic Compounds(VOCs : Benzene, Toluene, Xylene) as well as to assess exposure levels according to house-type, and whether residents were indoors or outdoors. This research was designed to assess the differences in exposure levels to indoor, outdoor and personal VOCs in a case group and a control group across all areas, as well as in each different area, from May to October 2007, in. 110 residents of the G, Y and H industrial areas of the Jun-nam province. The geometric mea-levels of airborne benzene for the case group 1.31part per billion(ppb) indoor, 1.29 ppb outdoor, and 1.32 ppb for personal exposure were significantly higher than for the control group 0.99, 0.87 and 0.57 ppb, respectively. The geometric mean level for toluene personal exposure across the G, Y and H areas was 5.70 ppb for the case group and 6.31 ppb for the control group. While the outdoor level was 4.27 ppb for the case group and 5.06 ppb for the control group, The indoor level for the case group was 4.78 ppb, similar to that of the control group 4.69 ppb. The geometric mean levels for airborne xylene across the G, Y and H areas were 0.16 ppb(outdoor), 0.12 ppb(personal exposure) and 0.10 ppb(indoor) for the case group, and for the control group were 0.17(personal exposure) and 0.09 ppb(indoor and outdoor). The indoor/outdoor(I/O) ratio for case group is 1.19, while that of the control group is 1.15, indicating that the indoor level was higher than the outdoor level. The interrelationship differences among the three different types of levels in the air in the G, Y and H areas are statistically significant, except for the difference between the indoor and outdoor figures for xylene. In terms of the different types of houses and energy type uesd, the geometric mean level for airborne benzene, toluene and xylene for houses were 1.61, 5.39 and 0.12 ppb, respectively. while the figures for flats were 0.67, 3.32 and 0.05 ppb, respectively. Outdoors, the levels of benzene and toluene in flats were 0.71 and 2.62 ppb, respectively. and 1.58 and 5.35 ppb in houses. For personal exposure, the house levels of benzene, toluene and xylene were all higher than for flats. Houses using oil for heating have significantly higher levels than flats, which use gas for heating.

Methyl-Tertiary Butyl Ether(MTBE) and BTEX Inside and Outside Apartments with Different Construction Age

  • Jo, Wan-Kuen;Lee, Jong-Hyo
    • 한국환경과학회지
    • /
    • 제19권1호
    • /
    • pp.1-8
    • /
    • 2010
  • Only limited information is available on the measured exposure levels of residents according to the construction age of apartments. As such, present study was conducted to measure and to compare the bedroom, living-room, and outdoor air levels of MTBE and benzene, toluene, ethyl benzene and m,p-xylene(BTEX) in both newer and older apartments. For both newer and older apartments, all the compounds except for MTBE showed significantly higher levels in bedrooms or living-rooms as compared to the outdoor concentrations. The ratio of bedroom or living-room median concentration to outdoor concentration was close to 1 for MTBE, whereas it was larger than 1 for other target compounds. It was also found that the bedroom and living-room appeared to have similar indoor sources and sinks for BTEX, but not for MTBE. The median concentration ratios of the newer apartments to the older apartments ranged from 1.63 to 1.81, depending upon the compounds. In contrast, the MTBE concentrations did not differ significantly between the newer and older apartments, thereby suggesting that although newer buildings could emit more VOCs, this is not applicable to all VOCs. Conclusively, the findings of present study should be considered, when designing exposure studies associated with VOC emissions in buildings and/or managing indoor air quality according to construction age of buildings.

중앙집중식 냉방시설의 냉각탑수중 레지오넬라균과 실내외 미생물 분포에 관한 연구 (Indoor and Outdoor Distribution of Legionella spp and Microbes on Cooling Towers Water of Central Air Conditioning Facilites)

  • 방선재;이철민;김윤신;선우영
    • 한국환경보건학회지
    • /
    • 제28권3호
    • /
    • pp.39-48
    • /
    • 2002
  • Cooling towers water has frequently been known as a source of infection in outbreaks of Legionnaires' disease and a source of indoor air pollution. However, there have been a few reports on the presence of Legionella in cooling towers water and aerosols of various public facilities. This study was carried out to investigate the indoor and outdoor dis-tribution of Legionella spp and microbe from 132 cooling towers water of public facilities detected 1. pneumophila in Seoul and Gyeonggi-Do areas. The results showed that the Lpneumophila among the selected 132 cooling towers was detected mostly in July (12.0%), followed by August (4.0%) and June, September no-detected. The 1. pneumophiia in public facilities was detected mostly in department store (27.3%), followed by hospital (8.7%), office building (5.9%), big market (5.0%) and hotel, subway no-detected. The pH values of cooling towers water with presence of 1. pneumophila showed mostly 8.0 or higher (9.5%), followed by 7.0~8.0 (6.8%), lower 7.0 no-detected. The tem-perature of cooling towers water with presence of L pnemophila showed mostly 30℃ or higher (9.8%), followed by 26~30℃ (6.9%), lower 25℃ no-detected. The turbidity of cooling towers water with presence of 1. pneumaphila showed mostly 1-2 M (8.8%), followed by above 2 NTU (5.9%), lower 1 NTU no-detected. The correlation coef-ficient between indoor and outdoor concentration of microbes in public facilities showed 0.67 in Legionella spy. (p>0.05), 0.93 in bacteria (p<0.01), 0.94 in fungus (p<0.01), 0.98 in coilform (p<0.01), respectively.

휘발유 및 환경 담배 연기 관련 벤젠 노출 (Exposure to Benzene Associated with Gasoline and Environmental Tobacco Smoke)

  • 조완근;문경조
    • 한국환경과학회지
    • /
    • 제8권3호
    • /
    • pp.319-323
    • /
    • 1999
  • This study was designed to evaluate the exposure to benzene by residents in neighborhoods near a major roadways, by persons waiting buses, and by drivers and service station attendants while refueling. It was confirmed that the outdoor air benzene concentrations near the major roadways were higher than those further away from the sources. However, neither the indoor air nor breath concentrations were different for two specified residential areas. Smoking was confirmed as an important factor for the indoor air benzene levels. Persons waiting buses, drivers and service station attendants were exposed to elevated benzene levels compared to even the residents in neighborhoods near a major roadways. The mean benzene concentration at bus stop was 2.7 to 6.9 times higher than the mean ambient air concentration. The mean benzene concentrations in the breathing zone of drivers and service station attendants were 95 to 160 and 120 to 202 times higher than the mean ambient air concentrations, respectively.

  • PDF

계절에 따른 사무실 근로자의 이산화질소 노출에 대한 직장 및 주택실내 기여도 (Contribution of Workplace and House Indoors for Personal Nitrogen Dioxide Exposure in Office Workers According to Season)

  • 양원호;김동건;홍가연;김순신;안호기
    • 한국산업보건학회지
    • /
    • 제22권2호
    • /
    • pp.128-133
    • /
    • 2012
  • People are exposed to air pollution from a range of indoor and outdoor sources. Concentration of nitrogen dioxide $(NO_2)$, which is hazardous to health, can be significant in both types of environment. This paper reports on the measurement and analysis of indoor and outdoor $NO_2$ concentrations and their comparison with measured personal exposure in house and workplace indoors with 28 office workers during winter and summer seasons. Time activity patterns were used to determine the effects of these factors on personal exposure. The residential indoor and office indoor times were $12.29{\pm}1.58,$ $7.86{\pm}1.97$ hours in winter and $11.04{\pm}2.18,$ $8.26{\pm}2.04$ hours in summer, respectively. Measured residential indoor, outdoor and office indoor, personal exposure $NO_2$ concentrations were $23.10{\pm}8.46$ ppb, $23.97{\pm}6.86$ ppb, $21.91{\pm}11.50$ ppb, $22.08{\pm}8.64$ ppb in winter, and $19.94{\pm}6.04$ ppb, $21.21{\pm}6.84{\pm}$ ppb, $22.55{\pm}9.54$ ppb, $27.45{\pm}8.96$ ppb in summer, respectively. Contributions of residential and office indoor $NO_2$ concentration on personal exposure were estimated by 57.98%, 35.62% in winter and 37.38%, 28.97% in summer, respectively.

다중이용시설에서의 실내공기중 미생물 분포에 관한 연구 (Distribution and Classification of Indoor Concentration of Microorganisms in Public Buildings)

  • 김윤신;이은규;엽무종;김기영
    • 한국환경보건학회지
    • /
    • 제28권1호
    • /
    • pp.85-92
    • /
    • 2002
  • A measurement of indoor microorganism using Reuter Centrifugal Air Sampler(RCS) was undertaken during October 1991 - February 1999 and 6-Stage Cascade Air Sampler was undertaken during May 2001 - June 2001 in Seoul. Sites including book store, department store, theater, subway station, underground shopping center, hospital, office building, sports facility, and eduationa institutio were chosen to measure indoor microorganism. The results were as follows: 1. The average of total microorganism collected on the agar strip GK-A media were, in the order, subway station, hospital, underground shopping center, department store, book store, theater, sports facility, educational institution, office building in sites. The highest concentration of 711cfu/m$^3$ was found in the subway station and the lowest concentration of 44cfu/m$^3$ was found in office building. 2. The average of staphylococci collected on the agar strip GK-S media, in the order, were subway station, underground shopping center, hospital and department store, department store, theater, office building, sports facility and educational institution in sites. The highest concentration of 502cfu/m$^3$ was found in the subway station and the lowest concentration of 14cfu/m$^3$ was found in sports facility and educational institution. 3. The average of fungus collected on the agar strip GK-HS media, in the order, were underground hospital, shopping center, theater, subway station, department store, book store, sports facility, educational institution, and office building in sites. The highest concentration of 252cfu/m$^3$ was found in the hospital and the lowest concentration of 32cfu/m$^3$ was found in office building. 4. Ratio of Indoor/Outdoor, determined by site was 1.12-2.38 in total count, 1.00-2.35 in staphylococci, and 0.99-1.34 in fungus. 5. The positive results of test were 12-24% in indoor and 9-43% in outdoor. 6. By gram staining gram positive cocci were 59.9%, gram positive bacill 24.4%, gram negative bacilli 10.4%, and gram negative cocci 0.5%.

물질수지를 이용한 학교 실내환경의 포름알데히드(HCHO) 배출량 산정에 의한 실내공기질 개선 평가 (Evaluation of Indoor Air Quality Improvement by Formaldehyde Emission Rate in School Indoor Environment Using Mass Balance)

  • 양원호;손부순;김대원;김영희;변재철;정순원
    • 한국산업보건학회지
    • /
    • 제15권3호
    • /
    • pp.160-165
    • /
    • 2005
  • Schools have significant and serious indoor environmental health problem, of which indoor air quality (IAQ) in school building may affect the health of the students and indirectly affect learning performance. Schools are of special concern when regarding indoor exposure to air pollutants, because students are particularly sensitive to pollutants and spend a significant amount of time in that environment. Therefore researches for improvement of indoor air quality have been developed such as installation of air cleaning device, ventilation system, titanium dioxide(TiO2) coating and so on. However, it is difficult to evaluate the magnitude of improvement of indoor air quality in field study because indoor air quality can be affected by source generation, outdoor air level, ventilation, decay by reaction, temperature, humidity, mixing condition and so on. In this study, evaluation of reduction of formaldehyde emission rate in school indoor environments by far-Infrared ray coating material was carried out using mass balance model in indoor environment. we proposed the evaluation method of magnitude of improvement in indoor air quality, considering outdoor level and ventilation. Since simple indoor concentration measurements could not properly evaluate the indoor air quality, outdoor level and ventilation should be considered when evaluate the indoor air quality.

Temporal Characteristics of Volatile Organic Compounds in Newly-Constructed Residential Buildings: Concentration and Source

  • Shin, Seung-Ho;Jo, Wan-Kuen
    • Environmental Engineering Research
    • /
    • 제18권3호
    • /
    • pp.169-176
    • /
    • 2013
  • The present study was designed to examine the concentrations, emission rates, and source characteristics of a variety of volatile organic compounds (VOCs) in 30 newly-constructed apartment buildings by measuring indoor and outdoor VOC concentrations over a 2-year period. For comparison, seven villa-type houses were also surveyed for indoor and outdoor VOC concentrations over a 3-month period. Indoor and outdoor air samples were collected on Tenax-TA adsorbent and analyzed using a gas chromatograph (GC)/mass spectrometer system or a GC/flame ionization detector system coupled to a thermal desorption system. The long-term change in indoor VOC concentrations depended on the type of VOCs. Generally, aromatic (except for naphthalene), aliphatic, and terpene compounds exhibited a gradual deceasing trend over the 2-year follow-up period. However, the indoor concentrations of the six halogenated VOCs did not significantly vary with time changes. Similar to these halogenated VOCs, the indoor naphthalene concentrations did not vary significantly with time changes over the 2-year period. Unlike the halogenated VOCs, the indoor naphthalene concentrations were much higher than the outdoor concentrations. The indoor concentrations of aliphatic and aromatic compounds were higher for the villa-type houses when compared to those of apartment buildings. In addition, four source groups (floor coverings and interior painting, household products, wood paneling and furniture, moth repellents) and three source groups (floor coverings and interior painting, household products, and moth repellents) were considered as potential VOC sources inside apartment buildings for the first- and second-year post-occupancy stages, respectively.