• Title/Summary/Keyword: Indole-3-acetic acid (IAA)

Search Result 158, Processing Time 0.028 seconds

In Vitro Propagation Through Nodal Explants in Helicteres isora L., a Medicinally Important Plant

  • Shriram, Varsha;Kumar, Vinay;Shitole, M.G.
    • Journal of Plant Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.189-195
    • /
    • 2007
  • Helicteres isora is medicinally important plant effective against asthma, diabetes, hypolipidemia, HIV, besides a good source of diosgenin. Seed dormancy and low rate of natural fruit production make this plant a perfect candidate for developing an in vitro method useful for its clonal propagation and further biotechnological developments. This is the first report on in vitro production of this plant. Nodal explants obtained from aseptically germinated seedlings were cultured on MS medium (Murashige and Skoog 1962) fortified with indole-3-acetic acid (IAA) ($0.57-22.83\;{\mu}M$), indole-3-butyric acid (IBA) ($0.41-16.58\;{\mu}M$), 6-benzylaminopurine (BA) ($0.44-17.75\;{\mu}M$) and kinetin (Kin) ($0.46-13.94\;{\mu}M$) either singly or in combinations of IAA + BA, IAA + Kin and BA + Kin. Combinations of cytokinins (BA and Kin) were most suitable for multiple shoot induction and $13.94\;{\mu}M\;Kin\;+\;13.31\;{\mu}M\;BA$ was optimum (79% frequency) associated with high number of microshoots (7.1 shoots per explant) after 20 days of culture. Maximum shoot elongation and proliferation (10 shoots per explant with 4.8 cm average height) was achieved on MS media containing $2.32\;{\mu}M\;Kin\;+\;2.22\;{\mu}M\;BA\;+\;2.85\;{\mu}M\;IAA$. High rooting frequency (70%) was achieved on MS medium (1/2 basal strength) fortified with $4.14\;{\mu}M$ IBA, while activated charcoal showed inhibitory effects on rooting. Hardening was done with 76% survival rate and these plants were growing without any visual defects and morphologically mimicking the naturally growing plants.

Characterization of auxin production plant growth promotion by a bacterium isolated from button mushroom compost

  • Yoo, Ji-Yeong;Lee, Heon-Hak;Han, Chang-Hoon;Yoon, Min-Ho
    • Journal of Mushroom
    • /
    • v.15 no.1
    • /
    • pp.8-13
    • /
    • 2017
  • An auxin-producing bacterial strain, designated 4-3, was isolated from waste button mushroom compost in Boryeong-si, Chungnam. The strain 4-3 was classified as a novel strain of Leucobacter tardus, based on chemotaxonomic and phylogenetic analyses. TLC and HPLC the isolated L. tardus strain 4-3 produced indole-3-acetic acid (IAA), the auxin. Maximum IAA productionof $94.3mg\;L^{-1}$ was detected for bacteria cultured in R2A medium with 0.1% l-tryptophan, incubated for 24 h at $35^{\circ}C$. Negative correlationwas observed between IAA production and pH of the culture medium, indicating that the increase inIAA caused acidification ofthe medium. The effect of supplementation with varying concentrations of l-tryptophan, a known precursor of IAA, was also assessed. production was maximal at 0.1% l, but decreased at lconcentrations above 0.2%. To investigate the plant growth-promoting effects of the bacterium, L. tardus strain 4-3 culture broth was used to inoculate water cultures and seed pots of mung bean. We found thatadventitious root induction and root growth were 2.2-times higher in thethan in the non-inoculated plants.

IAA Synthesis and Polyamine Metabolism in Higher Plants: Effects of IAA on the Activity of Diamine Oxidase in Seedlings of Soybean (고등식물에서 IAA합성과 Polyamine 대사에 관한 연구: 대두의 유식물에서 IAA가 Diamine Oxidase의 활성에 미치는 영향)

  • 김도균
    • Journal of Plant Biology
    • /
    • v.35 no.3
    • /
    • pp.265-271
    • /
    • 1992
  • Vie investigated the effect of indole acetic acid (IAA) on diamine oxidase (DAO; EC 1.4.3.6) in the seedling of soybean (Glycine max L. forma Paldalkong). DAO activity was not detected in the resting soybean seeds. During germination it appeared in the elongating zone on day 3, increased up to day 4 and decreased thereafter. Endogenous IAA content has been shown the same pattern as DAO activity. However, cadaverine content was reduced on day 4. To investigate the effect of IAA on DAO activity, the segments of hypocotyl on day 3 were soaked in various concentration of IAA. The activity increased at low concentrations ($10^{-7}-10^{-6}M$) of 1M as compared to that of control but not at high concentrations ($10^{-5}-10^{-4}M$) of IAA. Differing from DAO activity, cadaverine content increased as concentrations of IAA increased. On the other hand, ethylene was induced by IAA at high concentrations. To study the effect of ethylene on DAO activity, we cotreated IAA and 2,S-Norbonadiene (NDE). In this case, DAO activity was not affected.fected.

  • PDF

Isolation and Characterization of Plant Growth Promoting Rhizobacteria From Button Mushroom Compost

  • Oh, Sung-Hoon;Lee, Chang-Jung;Yoon, Min-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.1
    • /
    • pp.100-108
    • /
    • 2016
  • An auxin-producing bacteria (strain 5-1) was isolated from button mushroom compost in Boryeong-Si, Chungcheongnam-Do. The 5-1 strain was classified as a novel strain of Enterobacter aerogenes based on chemotaxonomic and phylogenetic analyses. The isolated E. aerogenes 5-1 was confirmed to produce indole-3-acetic acid (IAA), one of the auxin hormones, using TLC and HPLC analyses. When the concentration of IAA was assessed by performing HPLC quantitative analysis, a maximum concentration of IAA of $109.9mgL^{-1}$ was detected in the culture broth incubated in R2A medium containing 0.1% L-tryptophan for 24 h at $35^{\circ}C$. Acidification of the culture was deemed caused by an increase of IAA because a negative relationship between IAA production and pH was observed. Supplementation with a known precursor of IAA production, L-tryptophan, appeared to induce maximal production at 0.1% concentration, but it reduced production at concentrations above 0.2%. To investigate the growth-promoting effects to crops, the culture broth of E. aerogenes 5-1 was used to inoculate water cultures and seed pots of mung bean and lettuce. In consequence, adventitious root induction and root growth of mung bean and lettuce were two times higher than those of the control.

The RpoS Sigma Factor Negatively Regulates Production of IAA and Siderophore in a Biocontrol Rhizobacterium, Pseudomonas chlororaphis O6

  • Oh, Sang A;Kim, Ji Soo;Park, Ju Yeon;Han, Song Hee;Dimkpa, Christian;Anderson, Anne J.;Kim, Young Cheol
    • The Plant Pathology Journal
    • /
    • v.29 no.3
    • /
    • pp.323-329
    • /
    • 2013
  • The stationary-phase sigma factor, RpoS, influences the expression of factors important in survival of Pseudomonas chlororaphis O6 in the rhizosphere. A partial proteomic profile of a rpoS mutant in P. chlororaphis O6 was conducted to identify proteins under RpoS regulation. Five of 14 differentially regulated proteins had unknown roles. Changes in levels of proteins in P. chlororaphis O6 rpoS mutant were associated with iron metabolism, and protection against oxidative stress. The P. chlororaphis O6 rpoS mutant showed increased production of a pyoverdine-like siderophore, indole acetic acid, and altered isozyme patterns for peroxidase, catalase and superoxide dismutase. Consequently, sensitivity to hydrogen peroxide exposure increased in the P. chlororaphis O6 rpoS mutant, compared with the wild type. Taken together, RpoS exerted regulatory control over factors important for the habitat of P. chlororaphis O6 in soil and on root surfaces. The properties of several of the proteins in the RpoS regulon are currently unknown.

Effect of Oryzalin on the Gravitropic Response and Ethylene Production in Maize Roots (옥수수 일차뿌리에서 oryzalin이 굴중성 반응과 에틸렌 생성에 미치는 효과)

  • Kim, Chungsu;Mulkey, Timothy J.;Kim, Jong-Sik;Kim, Soon Young
    • Journal of Life Science
    • /
    • v.25 no.11
    • /
    • pp.1223-1229
    • /
    • 2015
  • Oryzalin is a dinitroaniline herbicide, which disrupts the arrangement of microtubules. Microtubules and microfilaments are cytoskeletal components that are thought to play a role in the sedimentation of statoliths and the formation of cell walls. Statoliths regulate the perception of gravity by columella cells in the root tip. To determine the effect of oryzalin on the gravitropic response, ethylene production in primary roots of maize was investigated. Treatment with 10-4 M oryzalin to the root tip inhibited the growth and gravitropic response of the roots. However, the treatment had no effect on the elongation zone of the roots. An application of 10-4 M oryzalin for 15 hr to the root tip caused root tip swelling. The application of 1-aminocycopropane-1-carboxylic acid (ACC), a precursor of ethylene, to the root tip also inhibited the gravitropic response. To understand the role of oryzalin in the regulation of the growth and gravitropic response of roots, ethylene production in the primary roots of maize was measured following treatment with oryzalin. Oryzalin stimulated ethylene production via the activation of ACC oxidase (ACO) and ACC synthase (ACS), and it increased the expression of ACO and ACS genes. Indole-3-acetic acid (IAA) played a key role in the asymmetric elongation rates observed during gravitropism. The results suggest that oryzalin alters the gravitropic response of maize roots through modification of the arrangement of microtubules. This might reduce the distribution of IAA in the upper and lower sides of the elongation zone and increase ethylene production, thereby inhibiting growth and gravitropic responses.

Isolation and Characterization of the Auxin producing Plant Growth Promoting Rhizobacterium from Soil in a Ginseng Field (인삼토양으로부터 옥신 생성 식물생장촉진세균의 분리 및 특성)

  • Bak, Hae-Sung;Jung, Young-Pil;Yoon, Min-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.3
    • /
    • pp.377-382
    • /
    • 2010
  • An auxin-producing bacterium (AMT-54) was isolated from ginseng cultivating soil of Geumsan area. The isolate AMT-54 was confirmed to produce indole-3-acetic acid (IAA) which is one of auxin hormone by TLC analysis. When the concentration of IAA was assessed by performing HPLC quantitative analysis, the maximal 457ppm of IAA was detected from the culture filtrate after culturing in R2A broth containing 0.1% tryptophan for 24h at $35^{\circ}C$. The molecular weight of the main peak obtained by LC-mass analysis was correspondent well to 175, that of IAA. The strain AMT-54 was identified as a novel species belongs to Klebsiella mobilis by a chemotaxanomic and phylogenetic analysis. To investigate the growth promoting effect of crop, when the culture broth of K. mobilis AMT-54 was infected onto seed pot of mung bean, the adventitious root induction and root growth of mung bean were 3.3times higher than control.

In vitro Effects of Plant Extracts, and Phytohormones on Mycelial Growth of Anthracnose Fungi

  • Alam, Shahidul;Han, Kee-Don;Lee, Jae-Min;Hur, Hyeon;Shim, Jae-Ouk;Chang, Kwang-Choon;Lee, Tae-Soo;Lee, Min-Woong
    • Mycobiology
    • /
    • v.32 no.3
    • /
    • pp.134-138
    • /
    • 2004
  • Water extracts of six plants, such as Allium sativum, A. cepa, Zingiber officinale, Platycodon grandiflorum, Oenanthe javanica, and Capsella brusapastoris, were tested in vitro for inhibitory activity against mycelial growth of anthracnose fungi, Colletotrichum gloeosporioides, C. dematium, and C. coccodes. Among the plant extracts, an Allium sativum extract has good inhibitory effects in all the fungi. Four phytohormones namely, IAA(indole-3-acetic acid), NAA(a-Naphthyl acetic acid), 2,4-D(2,4-Dichloro phenoxy acetic acid) and BAP(Benzyl adenine purine) were used to find out the role over mycelial growth of these fungi. All the concentrations of BAP have good inhibitory effect against mycelial growth of these fungi than that of other tested plant hormones.

Metabolic Engineering of Indole Glucosinolates in Chinese Cabbage Plants by Expression of Arabidopsis CYP79B2, CYP79B3, and CYP83B1

  • Zang, Yun-Xiang;Lim, Myung-Ho;Park, Beom-Seok;Hong, Seung-Beom;Kim, Doo Hwan
    • Molecules and Cells
    • /
    • v.25 no.2
    • /
    • pp.231-241
    • /
    • 2008
  • Indole glucosinolates (IG) play important roles in plant defense, plant-insect interactions, and stress responses in plants. In an attempt to metabolically engineer the IG pathway flux in Chinese cabbage, three important Arabidopsis cDNAs, CYP79B2, CYP79B3, and CYP83B1, were introduced into Chinese cabbage by Agrobacterium-mediated transformation. Overexpression of CYP79B3 or CYP83B1 did not affect IG accumulation levels, and overexpression of CYP79B2 or CYP79B3 prevented the transformed callus from being regenerated, displaying the phenotype of indole-3-acetic acid (IAA) overproduction. However, when CYP83B1 was overexpressed together with CYP79B2 and/or CYP79B3, the transformed calli were regenerated into whole plants that accumulated higher levels of glucobrassicin, 4-hydroxy glucobrassicin, and 4-methoxy glucobrassicin than wild-type controls. This result suggests that the flux in Chinese cabbage is predominantly channeled into IAA biosynthesis so that coordinate expression of the two consecutive enzymes is needed to divert the flux into IG biosynthesis. With regard to IG accumulation, overexpression of all three cDNAs was no better than overexpression of the two cDNAs. The content of neoglucobrassicin remained unchanged in all transgenic plants. Although glucobrassicin was most directly affected by overexpression of the transgenes, elevated levels of the parent IG, glucobrassicin, were not always accompanied by increases in 4-hydroxy and 4-methoxy glucobrassicin. However, one transgenic line producing about 8-fold increased glucobrassicin also accumulated at least 2.5 fold more 4-hydroxy and 4-methoxy glucobrassicin. This implies that a large glucobrassicin pool exceeding some threshold level drives the flux into the side chain modification pathway. Aliphatic glucosinolate content was not affected in any of the transgenic plants.

Effects of Ethylene Precursor, Auxin and Methyl Jasmonate on the Aerenchyma Formation in the Primary Root of Maize (Zea mays) (옥수수(Zea mays) 원뿌리의 통기조직 발달에 미치는 에틸렌 전구체, 옥신, 메틸자스몬산의 효과)

  • Ho, Jongyoon;Maeng, Sohyun;Park, Woong June
    • Journal of Life Science
    • /
    • v.25 no.1
    • /
    • pp.37-43
    • /
    • 2015
  • We have investigated the effects of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), indole-3-acetic acid (IAA) and methyl jasmonate (MeJA) on the development of aerenchyma in the primary root of maize (Zea mays). Because plant hormones affected the longitudinal organization of the primary root, we need an indicator to direct the positions for comparison between control and hormone-treated roots. Therefore, the zones of the maize primary root were categorized as PR25, PR50 and PR75, where each value indicates the relative position between the root tip (PR0) and the base (PR100). Aerenchyma was not observed at PR25 and PR50 and rarely found at PR75 in the cortex of control roots. The aerenchymal area at PR75 increased in the presence of the ethylene precursor ACC or a natural auxin IAA. On the other hand, MeJA differentially acted on non-submerged and submerged roots. Exogenously applied MeJA suppressed the aerenchyma formation in non-submerged roots. When the primary root was submerged, aerenchymal area expanded prominently. The submergence-induced aerenchyma formation was amplified with MeJA. Lateral root primordia have been known to inhibit aerenchymal death of surrounding cells. All the three hormones stimulating aerenchyma formation as described above did not restore the inhibition caused by lateral root primordia, suggesting that the inhibitory step regulated by lateral root primordia can be located after hormonal signaling steps.