• Title/Summary/Keyword: Indocyanine Green

Search Result 64, Processing Time 0.025 seconds

Fluorescence Image-Based Evaluation of Gastric Tube Perfusion during Esophagogastrostomy

  • Quan, Yu Hua;Han, Kook Nam;Kim, Hyun Koo
    • Journal of Chest Surgery
    • /
    • v.53 no.4
    • /
    • pp.178-183
    • /
    • 2020
  • During esophagectomy and esophagogastrostomy, the prediction of anastomotic leakage relies on the operating surgeon's tactile or visual diagnosis. Therefore, anastomotic leaks are relatively unpredictable, and new intraoperative evaluation methods or tools are essential. A fluorescence imaging system enables visualization over a wide region of interest, and provides intuitive information on perfusion intraoperatively. Surgeons can choose the best anastomotic site of the gastric tube based on fluorescence images in real time during surgery. This technology provides better surgical outcomes when used with an optimal injection dose and timing of indocyanine green.

Endoscopic Fluorescence Angiography with Indocyanine Green : A Preclinical Study in the Swine

  • Cho, Won-Sang;Kim, Jeong Eun;Kim, Sae Hoon;Kim, Hee Chan;Kang, Uk;Lee, Dae-Sic
    • Journal of Korean Neurosurgical Society
    • /
    • v.58 no.6
    • /
    • pp.513-517
    • /
    • 2015
  • Objective : Microscopic indocyanine green (ICG) angiography is useful for identifying the completeness of aneurysm clipping and the preservation of parent arteries and small perforators. Neuroendoscopy is helpful for visualizing structures beyond the straight line of the microscopic view. We evaluated our prototype of endoscopic ICG fluorescence angiography in swine, which we developed in order to combine the merits of microscopic ICG angiography and endoscopy. Methods : Our endoscopic ICG system consists of a camera, a light source, a display and software. This system can simultaneously display real-time visible and near infrared fluorescence imaging on the same monitor. A commercially available endoscope was used, which was 4 mm in diameter and had an angle of $30^{\circ}$. A male crossbred swine was used. Results : Under general anesthesia, a small craniotomy was performed and the brain surface of the swine was exposed. ICG was injected via the ear vein with a bolus dose of 0.3 mg/kg. Visible and ICG fluorescence images of cortical vessels were simultaneously observed on the display monitor at high resolution. The real-time merging of the visible and fluorescent images corresponded well. Conclusion : Simultaneous visible color and ICG fluorescent imaging of the cortical vessels in the swine brain was satisfactory. Technical improvement and clinical implication are expected.

Influence of Phenobarbital on the Hepatic Clearance of Organic Anionic Drugs in Rats - On the Basis of Pharmacokinetics of Indocyanine Green - (Rat에 있어서 Phenobarbital이 유기음이온성 의약품의 간클리어란스에 미치는 영향 - Indocyanine Green의 체내동태를 중심으로 -)

  • Lee, Yong-Bok;Shin, Sang-Chul;Koh, Ik-Bae
    • Korean Journal of Clinical Pharmacy
    • /
    • v.3 no.1
    • /
    • pp.31-43
    • /
    • 1993
  • The influence of phenobarbital(PB) pretreatment(75mg/kg/day, Lp. for 4 days) on the hepatic clearance of indocyanine green(ICG) as a model compound of organic anionic drugs was investigated in rats in order to elucidate the relative contributions of change in the hepatic blood flow versus increase in the hepatic intrinsic activity to remove ICG due to PB pretreatment. ICG(1mg/kg) was injected single bolus via femoral or portal vein to the control and the PB-pretreated rats. The initial hepatic uptake clearance$(V_{d.c.}K_{12})$ obtained from plasma concentration-time data was increased by $38.4\% in the PB-pretreated rats, which may be due to the increased hepatic blood flow by PB pretreatment. Using a pharmacokinetic approach, hepatic blood flows were estimated of 67.5ml/min/kg in control rats and 91.9ml/min/kg in PB-pretreated rats. They were in good agreement with other's blood flow estimates observed experimentally. It may be concluded that the $38\%$ increased initial hepatic uptake clearance of ICG was due to the $36\%$ increased hepatic blood flow with phenobarbital, and that the increased hepatic blood flow and the activated hepatic intrinsic clearance with phenobarbital contributed to $49\%\;and\;51\%$ of the increased systemic clearance of ICG, respectively.

  • PDF

Real-time Vessel Navigation Using Indocyanine Green Fluorescence during Robotic or Laparoscopic Gastrectomy for Gastric Cancer

  • Kim, Mina;Son, Sang-Yong;Cui, Long-Hai;Shin, Ho-Jung;Hur, Hoon;Han, Sang-Uk
    • Journal of Gastric Cancer
    • /
    • v.17 no.2
    • /
    • pp.145-153
    • /
    • 2017
  • Purpose: Identification of the infrapyloric artery (IPA) type is a key component of pylorus-preserving gastrectomy. As the indocyanine green (ICG) fluorescence technique is known to help visualize blood vessels and flow during reconstruction, we speculated that this emerging technique would be helpful in identifying the IPA type. Materials and Methods: From August 2015 to February 2016, 20 patients who underwent robotic or laparoscopic gastrectomy were prospectively enrolled. After intravenous injection of approximately 3 mL of ICG (2.5 mg/mL), a near-infrared fluorescence apparatus was applied. The identified shape of the IPA was confirmed by examining the actual anatomy following infrapyloric dissection. Results: The mean interval time between ICG injection and visualization of the artery was 22.2 seconds (range, 14-30 seconds), and the mean duration of the arterial phase was 16.1 seconds (range, 9-30 seconds). The overall positive predictive value (PPV) of ICG fluorescence in identifying the IPA type was 80% (16/20). The IPA type was incorrectly predicted in four patients, all of whom were obese with a body mass index (BMI) of more than $25kg/m^2$. Conclusions: Our preliminary results indicate that intraoperative vascular imaging using the ICG fluorescence technique may be helpful for robotic or laparoscopic pylorus-preserving gastrectomy.

Value of Indocyanine Green Videoangiography in Deciding the Completeness of Cerebrovascular Surgery

  • Moon, Hyung-Sik;Joo, Sung-Pil;Seo, Bo-Ra;Jang, Jae-Won;Kim, Jae-Hyoo;Kim, Tae-Sun
    • Journal of Korean Neurosurgical Society
    • /
    • v.53 no.6
    • /
    • pp.349-355
    • /
    • 2013
  • Objective : Recently, microscope-integrated near infrared indocyanine green videoangiography (ICG-VA) has been widely used in cerebrovascular surgery because it provides real-time high resolution images. In our study, we evaluate the efficacy of intraoperative ICG-VA during cerebrovascular surgery. Methods : Between August 2011 and April 2012, 188 patients with cerebrovascular disease were surgically treated in our institution. We used ICG-VA in that operations with half of recommended dose (0.2 to 0.3 mg/kg). Postoperative digital subtraction angiography and computed tomography angiography was used to confirm anatomical results. Results : Intraoperative ICG-VA demonstrated fully occluded aneurysm sack, no neck remnant, and without vessel compromise in 119 cases (93.7%) of 127 aneurysms. Eight clipping (6.3%) of 127 operations were identified as an incomplete aneurysm occlusion or compromising vessel after ICG-VA. In 41 (97.6%) of 42 patients after carotid endarterectomy, the results were the same as that of postoperative angiography with good patency. One case (5.9%) of 17 bypass surgeries was identified as a nonfunctioning anastomosis after ICG-VA, which could be revised successfully. In the two patients of arteriovenous malformation, ICG-VA was useful for find the superficial nature of the feeding arteries and draining veins. Conclusion : ICG-VA is simple and provides real-time information of the patency of vessels including very small perforators within the field of the microscope and has a lower rate of adverse reactions. However, ICG-VA is not a perfect method, and so a combination of monitoring tools assures the quality of cerebrovascular surgery.

Indocyanine green fluorescence videoangiography for reliable variations of supraclavicular artery flaps

  • Suzuki, Yushi;Shimizu, Yusuke;Kasai, Shogo;Yamazaki, Shun;Takemaru, Masashi;Kitamura, Takuya;Kawakami, Saori;Tamura, Takeshi
    • Archives of Plastic Surgery
    • /
    • v.46 no.4
    • /
    • pp.318-323
    • /
    • 2019
  • Background Pedicled flaps are useful for reconstructive surgery. Previously, we often used vascularized supraclavicular flaps, especially for head and neck reconstruction, but then shifted to using thoracic branch of the supraclavicular artery (TBSA) flaps. However, limited research exists on the anatomy of TBSA flaps and on the use of indocyanine green (ICG) fluorescence videoangiography for supraclavicular artery flaps. We utilized ICG fluorescence videoangiography to harvest reliable flaps in reconstructive operations, and describe the results herein. Methods Data were retrospectively reviewed from six patients (five men and one woman: average age, 54 years; range, 48-60 years) for whom ICG videoangiography was performed to observe the skin perfusion of a supraclavicular flap after it was raised. Areas where the flap showed good enhancement were considered to be favorable for flap survival. The observation of ICG dye indicated good skin perfusion, which is predictive of flap survival; therefore, we trimmed any areas without dye filling and used the remaining viable part of the flap. Results The flaps ranged in size from $13{\times}5.5cm$ to $17{\times}6.5cm$. One patient received a conventional supraclavicular flap, four patients received a TBSA flap, and one patient received a flap that was considered to be intermediate between a supraclavicular flap and a TBSA flap. The flaps completely survived in all cases, and no flap necrosis was observed. Conclusions The TBSA flap is very useful in reconstructive surgery, and reliable flaps could be obtained by using ICG fluorescence videoangiography intraoperatively.

In Vivo Enhanced Indocyanine Green-Photothermal Therapy for a Subconjunctival Tumor

  • Kim, Chang Zoo;Lee, Sang Joon;Hwang, Sang Seok;Chae, Yu-Gyeong;Kwon, Daa Young;Ko, Taek Yong;Kim, Jun Hyeong;Jung, Min Jung;Masanganise, Rangarirai;Oak, Chulho;Ahn, Yeh-Chan
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.311-321
    • /
    • 2021
  • Indocyanine green (ICG) is a dye approved for use in clinical diagnostics. ICG remains in the intravascular space following intravenous administration, due to its ability to rapidly bind to the plasma proteins, and its therapeutic potential has been studied in well-vascularized cutaneous tumors. Here we have evaluated the clinical response of a subconjunctival tumor to photothermal therapy (PTT) using an ICG-enhanced near-infrared diode laser and its adverse effects, in a rabbit. 22 male New Zealand white rabbits with subconjunctival tumors were enrolled (control group 6, laser-only group 8, laser-with-ICG group 8). Rabbits in the laser-with-ICG group received ICG (twice, 2 mg/kg each time, intravenously) directly followed by irradiation with a diode laser (λ = 810 nm). Rabbits in the laser-only group were irradiated with the diode laser. ICG angiography, ultrasonography, and pathologic examination were performed to evaluate PTT response at specific time points (0, 2, and 4 weeks after PTT). Two weeks after initial treatment, the eight rabbits treated by laser with ICG showed a 100% response rate. There was no clinical response in both laser-only and control groups. ICG-PTT is a potential and effective palliative therapeutic modality for subconjunctival tumors.

Numerical Model for Cerebrovascular Hemodynamics with Indocyanine Green Fluorescence Videoangiography

  • Hwayeong Cheon;Young-Je Son;Sung Bae Park;Pyoung-Seop Shim;Joo-Hiuk Son;Hee-Jin Yang
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.4
    • /
    • pp.382-392
    • /
    • 2023
  • Objective : The use of indocyanine green videoangiography (ICG-VA) to assess blood flow in the brain during cerebrovascular surgery has been increasing. Clinical studies on ICG-VA have predominantly focused on qualitative analysis. However, quantitative analysis numerical modelling for time profiling enables a more accurate evaluation of blood flow kinetics. In this study, we established a multiple exponential modified Gaussian (multi-EMG) model for quantitative ICG-VA to understand accurately the status of cerebral hemodynamics. Methods : We obtained clinical data of cerebral blood flow acquired the quantitative analysis ICG-VA during cerebrovascular surgery. Varied asymmetric peak functions were compared to find the most matching function form with clinical data by using a nonlinear regression algorithm. To verify the result of the nonlinear regression, the mode function was applied to various types of data. Results : The proposed multi-EMG model is well fitted to the clinical data. Because the primary parameters-growth and decay rates, and peak center and heights-of the model are characteristics of model function, they provide accurate reference values for assessing cerebral hemodynamics in various conditions. In addition, the primary parameters can be estimated on the curves with partially missed data. The accuracy of the model estimation was verified by a repeated curve fitting method using manipulation of missing data. Conclusion : The multi-EMG model can possibly serve as a universal model for cerebral hemodynamics in a comparison with other asymmetric peak functions. According to the results, the model can be helpful for clinical research assessment of cerebrovascular hemodynamics in a clinical setting.

Indocyanine green excretion test and changes of plasma enzyme activites in dogs (개에서의 indocyanine green 배설시험 및 혈장효소 활성치의 변화)

  • Kim, Cheol-ho;Choi, Il-kwan;Son, Min-soo;Kim, Jin-gu;Kang, Chung-boo
    • Korean Journal of Veterinary Research
    • /
    • v.32 no.4
    • /
    • pp.671-675
    • /
    • 1992
  • This experiment was carried out to establish a proper method of indocyanine green(ICG) excretion test for a applicable liver function test in dogs. The half life(T1/2), fractional clearance rate(KICG) and retention rate after injection of ICG with or without administred carbon tetrachloride($CCl_4$) were also invested. The results obtained were as follows ; 1. The maximum absorbance of ICG in plasma was at 810nm. 2. Half life and fractional clearance rate when administered 0.25 and 0.50mg of ICG per Kilogram body weight were $6.33{\pm}0.58$ minutes and $0.11{\pm}0.99$/minute in the former, $10.01{\pm}1.0$ minutes and $0.07{\pm}0.007$/minute in the latter, respectively. The ICG removal rate was exponentially linear for the first 15 minutes after injection both, of 0.25 and 0.50mg of ICG. 3. One day following the administration of $0.0042m{\ell}\;CCl_4$ kilogram body weight which injected 0.50mg of ICG, half life was more longer and fractional clearance rate was significantly reduced than that of ICG single injection. 4. Plasma retention rate when 15, 30, 45 minutes after injection dose of 0.25 and 0.50mg ICG per Kilogram body weight, $14.7{\pm}4.8$, $5.1{\pm}3.1$, $2.6{\pm}1.6%$ in the former, $26.9{\pm}1.8$, $11.1{\pm}2.4$, $4.8{\pm}1.3%$ in the latter, respectively. However, after administration of $CCl_4$, plasma retention rate of ICG at a dose of 0.50mg, it was $39.3{\pm}0.9$, $16{\pm}2.9$, $10.7{\pm}0.1%$, respectively. 5. Plasma enzyme(AST, ALT, r-GTP) activities administered with $CCl_4$ were increased, but there was no change which injected any dose of single ICG injection. From these results, ICG excretion test to dog is applicable to evaluation of liver function in both clinical and research.

  • PDF