SNS는 일상생활에 매우 밀접한 서비스가 되었다. SNS를 통해 마케팅이 이루어지면서 흔히 핫플레이스라 불리는 장소가 생겨나고, 이곳으로 사용자들이 몰리고 있다. 하지만 단기간 많은 사람이 몰리며 혼잡한 경우가 빈번하게 발생하여 방문자와 서비스 제공자 모두 부정적인 경험을 하게 되는 경우가 많다. 이러한 문제를 개선하기 위해 혼잡도를 파악해야 하지만 개인적 수준에서 특정 지역의 혼잡도를 알아볼 방법은 매우 한정적이다. 이에 본 연구에서는 SNS상의 데이터를 활용하여 특정 관광지에 대한 혼잡도 정보 및 방문자들의 특성을 파악할 수 있는 시스템을 제시하고자 하였다. 이를 위해 사용자들이 업로드한 포스팅 데이터와 이미지 분석을 사용하였으며 네이버 DataLab 시스템을 이용하여 제안 시스템의 성능을 검증하였다. 관광지 유형별로 3개 장소를 선정하여 비교 검증한 결과 본 연구에서 산출한 결과와 DataLab에서 제공하는 혼잡도 수준이 유사한 것으로 나타났으며, 특히 본 연구는 특정 기업이나 서비스에 종속되지 않는 사용자의 실 데이터에 기반한 혼잡도를 제공하였다는 것에 의의가 있다.
본 연구의 목적은 입원환자가 낙상사고 전후에 따라 건강상태 관련 특성의 차이를 확인하기 위함이며, 2016년 1월 1일부터 2020년 12월 31일까지 입원 후 낙상사고가 발생하여 환자안전보고시스템에 보고된 환자 328명의 데이터를 활용한 후향적 연구이다. 연구대상자의 연령은 평균 68.57±14.13세로서 70대가 30.49%로 가장 많았고, 입원 이후 평균 13.86±25.03일이 경과 시에 낙상사건이 발생하였고, 발생 시간대는 야간(22:30- 06:59)이 42.99%로 가장 많았다. 입원 후 낙상 전후에 배변문제(x2=314.0, p<.001), 배뇨문제(x2=284.0, p<.001), 정맥수액요법(x2=85.16, p<.001), 걸음걸이의 허약감(x2=69.77. p<.001), 와상(x2=51.60, p<.001), 의식이 불명하거나 자신의 기능을 과대평가한 경우(x2=17.52, p<.001) 비협조적 태도(x2=220.17, p<.001)에서 통계적으로 유의한 차이가 있었다. 낙상 전후 환자의 건강상태 관련 특성의 차이를 파악하여 환자의 특성에 맞는 적절한 낙상예방 및 개별적인 교육중재활동을 모색할 필요가 있다.
서지정보는 연구 주제의 최신 동향의 인지와 유용성을 검증하는 데에 참고할 수 있다. 즉, 각자 연구자들이 필요로 하는 문헌에 신속하게 접근하기 위해서는 학술논문에서 저자 정보, 요약, 초록, 참고문헌 등을 쉬운 방법으로 파악해야 한다. 그러나, 현재 출판되는 PDF 형식의 전자 학술논문은 출판 주체별로 고유한 양식을 띄고 있어서, 몇몇 특징에 의한 규칙 기반 추출법으로는 수많은 문헌에서 목표 정보를 추출하여 요약된 서지사항으로 자동 생성하기 어렵다. 이에 본 연구는 학술논문 서지사항 자동 생성에 있어서 양식의 다양성으로 인한 메타데이터 자동 추출의 난점을 극복할 방법을 제안한다. 제안하는 모델은 서지사항이 주로 기술되는 학술논문의 첫 페이지에서 목표 영역과 본문의 시작점을 구분할 수 있는 심층신경망 기반 모델과 앞의 모델로 추출된 서지사항을 상세한 메타데이터로 분류하고 재생성하는 규칙 기반 모델로 구성된다. 제안하는 모델은 참고문헌 요약정보를 생성하는 모델도 포함하는데, 본문의 말미와 참고문헌 시작점의 분리, 그리고 개별 참고문헌 추출을 규칙 기반 방법으로 진행하고, 추출한 각개 참고문헌의 서지정보를 분류하는 데에 심층신경망을 이용하도록 구성하였다. 추가로, 논문 자체의 서지정보를 전후처리 없이 추출/생성하는 모델의 가능성을 확인하기 위하여 참고문헌 영역까지 아우르는 모델을 구축하여 비교 실험을 진행하였다. 실험 결과 본 논문에서 제안하는 방식이 서지정보를 전후처리 하지 않고 진행한 비교 실험에 비하여 더 높은 성능을 보였다.
메이크업은 사람의 외모를 개선하는 가장 보편적인 방법이다. 하지만 메이크업의 스타일이 매우 다양하기 때문에 한 개인이 본인에게 직접 메이크업을 하는 것에는 많은 시간적, 비용적 문제점이 존재한다. 이에 따라 메이크업 자동화에 대한 필요성이 증가하고 있다. 메이크업의 자동화를 위해 메이크업 변환(Makeup Transfer)가 연구되고 있다. 메이크업 변환은 메이크업이 없는 얼굴 영상에 메이크업 스타일을 적용시키는 분야이다. 메이크업 변환은 전통적인 영상 처리 기반의 방법과 딥러닝 기반의 방법으로 나눌 수 있다. 특히 딥러닝 기반의 방법에서는 적대적 생성 신경망을 기반으로 한 연구가 많이 수행되었다. 하지만 두 가지 방법 모두 결과 영상이 부자연스럽거나 메이크업 변환의 결과가 뚜렷하지 않고 번지거나 메이크업 스타일 얼굴 영상의 영향을 많이 받는다는 단점이 있다. 메이크업의 뚜렷한 경계를 표현하고 메이크업 스타일 얼굴 영상에서 받는 영향을 완화시키기 위해 본 연구에서는 메이크업 영역을 분할하고 HoG(Histogram of Gradient)를 사용해 손실 함수를 계산한다. HoG는 영상 내에 존재하는 에지의 크기와 방향성을 통해 영상의 특징을 추출하는 방법이다. 이를 통해 에지에 대해 강건한 학습을 수행하는 메이크업 변환에 대해 제안한다. 제안한 모델을 통해 생성된 영상과 베이스 모델로 사용하는 BeautyGAN을 통해 생성된 영상을 비교해 본 연구에서 제안한 모델의 성능이 더 뛰어남을 확인하고 추가로 제시할 수 있는 얼굴 정보에 대한 사용 방법을 향후 연구로 제시한다.
본 논문은 연극의 고유성인 살아있는 예술의 진수를 배우의 '현존'으로 보고, 동시대 연극의 배우 훈련과 역할 창조 방법에 대한 새로운 제안이며 행위자의 실제적 활용을 위한 구체적 시각으로의 접근이다. 이에 대한 방법으로 박탄고프와 미카엘 체홉의 연기 테크닉의 요소를 정리함과 동시에 발전 과정에서 알 수 있는 공연 기록들을 토대로 이론적 개념에 보다 쉽게 접근할 수 있도록 한다. 본 연구에서 중점적으로 논의하는 환상적 사실주의와 테크닉 연기는 새로운 배우, 새로운 역할 창조의 다각화를 위한 방법으로 일상에서의 예술적 영감과 배우의 상상력과 이미지, 무의식에 대한 탐구와 실현의 중요성을 강조한다. 이들의 공통된 관점을 종합할 때 달성하고자 하는 목표는 외적 형태와 내적 진실이 결합된 창조적 방법에 대한 연구이자 배우 개인의 독창적 역할 창조를 위한 새로운 시스템의 구현이다. 이를 통해 알 수 있는 유사점과 차이점에 대한 구분과 실제적 효용성의 한계를 밝히고 동시에 배우의 자발적 훈련과 능동적 태도의 요구와 함께 역할 창조의 보편적 방법으로 제안하고자 한다.
목적 : 본 연구는 작업기반 라이프스타일 중재 프로그램이 지역사회 노인에게 미치는 효과를 알아보고 적용가능성을 알아보기 위해 진행되었다. 연구방법 : 지역사회에 거주하고 있는 노인 9명을 대상으로 진행되었으며 단일집단 사전-사후 검사 설계를 사용하여 연구를 진행하였다. 참가자들은 해외 연구를 통해 효과가 확인된 라이프스타일 리디자인 프로그램(Lifestyle redesign program)을 기반으로 한 작업기반 라이프스타일 중재 프로그램을 그룹회기 12회, 개인회기 1회로 총 7주에 걸쳐 제공받았다. 효과를 알아보기 위해 작업균형, 시간사용, 활동참여 수준, 활동 수행도 및 만족도, 우울, 건강관련 삶의 질에 대한 평가를 프로그램 전, 후로 진행하고 평가 결과를 분석하였다. 또한 후기평가 시 프로그램에 대한 설문을 진행하여 참가자들이 생각하는 주관적인 프로그램의 타당성, 필요성, 효과성에 대해 알아보았다. 결과 : 초기평가와 후기평가를 통해 얻은 자료를 분석한 결과 전반적인 작업균형(p=.012)과 하위영역인 건강(p=.017), 관계(p=.012), 도전 및 흥미(p=.012), 자아정체성(p=.012)에 대한 작업균형 그리고 활동참여수준(p=.008), 활동 수행도(p=.012) 및 만족도(p=.008), 전반적인 건강관련 삶의 질(p=.034) 및 하위영역 중 신체적 건강(p=.041)이 향상되었으며, 여가(p=.008)와 휴식(p=.008)에 대한 시간사용에 변화가 있었고, 마지막으로 우울(p=.012)이 감소한 것을 확인할 수 있었다. 또한 프로그램에 대한 설문 결과 참가자들이 생각하는 프로그램에 대한 주관적 타당성, 필요성, 효과성 모두 적절한 수준을 나타내는 것을 확인하였다. 결론 : 작업기반 라이프스타일 중재프로그램은 지역사회 노인에게 충분히 받아들여질 수 있으며 건강에 긍정적인 영향을 미칠 수 있는 중재법으로 사료된다.
Currently, a vast amount of hydrologic data is accumulated in real-time through automatic water level measuring instruments in agricultural reservoirs. At the same time, false and missing data points are also increasing. The applicability and reliability of quality control of hydrological data must be secured for efficient agricultural water management through calculation of water supply and disaster management. Considering the characteristics of irregularities in hydrological data caused by irrigation water usage and rainfall pattern, the Korea Rural Community Corporation is currently applying the Hampel filter as a water level data quality management method. This method uses window size as a key parameter, and if window size is large, distortion of data may occur and if window size is small, many outliers are not removed which reduces the reliability of the corrected data. Thus, selection of the optimal window size for individual reservoir is required. To ensure reliability, we compared and analyzed the RMSE (Root Mean Square Error) and NSE (Nash-Sutcliffe model efficiency coefficient) of the corrected data and the daily water level of the RIMS (Rural Infrastructure Management System) data, and the automatic outlier detection standards used by the Ministry of Environment. To select the optimal window size, we used the classification performance evaluation index of the error matrix and the rainfall data of the irrigation period, showing the optimal values at 3 h. The efficient reservoir automatic calibration technique can reduce manpower and time required for manual calibration, and is expected to improve the reliability of water level data and the value of water resources.
지상 오존은 차량 및 산업 현장에서 배출된 질소화합물(Nitrogen oxides; NOx)과 휘발성 유기화합물(Volatile Organic Compounds; VOCs)의 광화학 반응을 통해 생성되어 식생 및 인체에 악영향을 끼친다. 국내에서는 실시간 오존 모니터링을 수행하고 있지만 관측소 기반으로, 미관측 지역의 공간 분포 분석에 어려움이 있다. 본 연구에서는 스태킹 앙상블 기법을 활용하여 매시간 남한 지역의 지상 오존 농도를 1.5km의 공간해상도로 공간내삽하였고, 5-fold 교차검증을 수행하였다. 스태킹 앙상블의 베이스 모델로는 코크리깅(Cokriging), 다중 선형 회귀(Multi-Linear Regression; MLR), 랜덤 포레스트(Random Forest; RF), 서포트 벡터 회귀(Support Vector Regression; SVR)를 사용하였다. 각 모델의 정확도 비교 평가 결과, 스태킹 앙상블 모델이 연구 기간 내 시간별 평균 R 및 RMSE이 0.76, 0.0065ppm으로 가장 높은 성능을 보여주었다. 스태킹 앙상블 모델의 지상 오존 농도 지도는 복잡한 지형 및 도시화 변수의 특징이 잘 드러나며 더 넓은 농도 범위를 보여주었다. 개발된 모델은 매시간 공간적으로 연속적인 공간 지도를 산출할 수 있을 뿐만 아니라 8시간 평균치 산출 및 시계열 분석에 있어서도 활용 가능성이 클 것으로 기대된다.
본 연구에서는 청소년 비행이 지속적인 사회문제로 대두됨에 따라 청소년의 온·오프라인 비행을 예측하는 주요 요인들을 탐색하고 전통적 비행이론(사회학습이론, 일반긴장이론, 사회통제이론, 일상활동이론, 낙인이론)의 적용 가능성을 살펴보았다. 분석에 활용된 데이터는 한국아동·청소년패널조사 2010(KCYPS 2010)의 초1, 초4, 중1 패널 6차년도 데이터이다(N=4,137). 예측 모형을 구축함에 있어 전통적 통계기반의 회귀모형 대신 랜덤포레스트 머신러닝 기법을 활용함으로써 예측 성능 향상과 더불어 보다 많은 예측요인의 고려 가능성에 초점을 두었다. 랜덤포레스트 분석 결과, 청소년의 온·오프라인 비행을 설명하는 데에 전통적인 비행이론은 여전히 유효하였으며, 온라인 비행은 주로 개인적 요인(일상활동이론, 낙인이론)과, 오프라인 비행은 사회적 요인(사회학습이론, 사회통제이론)과 관련이 있는 것으로 나타났다. 또한 일반긴장 이론은 온라인 비행과 오프라인 비행 모두를 예측하는 중요한 이론적 기반임을 확인할 수 있었다. 본 연구는 머신러닝 기법을 통해 청소년 비행에 영향을 주는 주요 요인을 도출하고, 기존 비행이론의 활용 가능성도 함께 고려했다는 점에서 의의가 있으며, 청소년 온·오프라인 비행에 대한 예방 및 개입 방향성을 재고하는 기반을 제공할 것이라 기대된다.
본 연구는 조직상황에서 구성원의 조직몰입에 영향을 미치는 집단의 성공 경험을 심층적으로 고찰하고 집단효능감과 집단응집성의 집단수준 변인과 개인수준의 동기관련 태도변인과의 관계를 확인하여 다층적 관점에서 그 역학관계를 밝히는 것을 목적으로 한다. 해군 간부들을 대상으로 설문조사를 실시하여 총 36개 집단, 613명의 자료가 분석에 사용되었다. 연구 방법은 다층모형을 적용하고 다수준 매개효과 절차에 의거하여 일련의 연구 가설들을 검증하였다. 분석 결과, 집단의 성공 경험은 집단효능감을 거쳐 집단응집성으로 이어지는 매개효과가 검증되었으며, 개인의 직무효능감에 영향을 미치는 집단의 성공 경험과 집단효능감의 교차수준의 주 효과가 관찰되었다. 또한, 집단응집성은 개인의 조직몰입에 정적으로 영향을 미쳤으며, 교차수준에서의 연구변인들 간 다수준 매개효과를 검증한 결과, 집단효능감은 집단의 성공 경험과 개인의 직무효능감의 관계를 매개하였으며, 집단응집성은 집단효능감과 개인의 조직몰입의 관계를 매개하였고, 개인의 직무효능감은 집단의 성공 경험과 개인의 조직몰입의 관계를 매개하였다. 또한, 개인의 직무효능감은 집단효능감과 개인의 조직몰입의 관계를 매개하였다. 본고에서 도출한 이 결과는 어느 집단에 소속되는 지에 따라 구성원들의 동기적 수준과 태도가 다를 수 있으며, 집단의 수행 결과에 대한 구성원들의 공유된 지각이 중요한 동기적 근원으로써 집단응집성에 이르게 하는 초석이 될 수 있음을 시사하였다. 이러한 연구 결과를 바탕으로 본 연구가 갖는 시사점과 한계점, 향후 연구방향에 대해 논의하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.