• Title/Summary/Keyword: Individual droplet

Search Result 34, Processing Time 0.026 seconds

Application of Microbeam Technique to Atmospheric Science

  • Ma Chang-Jin
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2005.11a
    • /
    • pp.67-74
    • /
    • 2005
  • Microbeam PIXE, often called micro-PIXE, is a powerful tool tot analyzing a wide range of elements for various samples, as well as, it has important applications of interest to the atmospheric science. In this study, qualitative elemental imagination for various atmospheric environmental species was attempted using micro-PIXE. Here, we present the results of an application of micro-PIXE to the study of atmospheric environment. The detailed spatial resolution of multiple elements lot various samples like individual ambient particles, individual raindrops, individual fog droplets, and individual snow crystals could be successfully achieved by scanning 2.6 MeV H+ micro beam (1-2 ${\mu}m$) accelerated by 3 MV single-end accelerator.

  • PDF

Numerical Analysis of the Effect of Injection Pressure Variation on Free Spray and Impaction Spray Characteristics

  • Park, Kweon-Ha;Kim, Byung-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.236-250
    • /
    • 2000
  • Compression ignition direct injection diesel engines employed a high pressure injection system have been developed as a measure to improve a fuel efficiency and reduce harmful emissions. In order to understand the effects of the pressure variation, many experimental works have been done, however there are many difficulties to get data in engine condition. This work gives numerical results for the high pressure effects on spray characteristics in wide or limited space with near walls. The gas phase is modelled by Eulerian continuum conservation equations of mass, momentum, energy and fuel vapour fraction. The liquid phase is modelled using the discrete droplet model approach in Lagrangian form and the drop behavior on a wall is calculated with a new droplet-wall interaction model based on the experiments observing individual drops. The droplet distributions, vapour fractions and gas flows are shown in various injection pressure cases. In free spray case which the injection spray has no wall impaction, the spray dispersion and vapour fraction increase and drop sizes decrease with increasing injection pressure. The same phenomena appears more clearly in wall impaction cases.

  • PDF

An Experimental Study on the Evaporation and Ignition of CWS Droplets (CWS액적의 증발 및 점화에 관한 실험적 연구)

  • 안국영;백승욱;김관태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1246-1252
    • /
    • 1993
  • Coal-Water slurry (CWS) is a new potential form of fuel for use in power plants and industrial furnaces. The evaporation and ignition characteristics of CWS have been studied in the post-flame region generated by a flat flame burner. Individual droplets with initial diameters of 1-3mm were supported around the thermocouples and raidly exposed to a hot gas stream. The gas temperature ranged between $950^{\circ}C$ and 1600.deg. C at atmospheric pressure. The effect of droplet size, gas temperature and radiative heat transfer by screen were studied experimentally. The ignition criterion was either a rapid temperature rise in time-temperatuire curves or onset of visible flame in experiment. Incresing the gas temperature or decreasing the droplet size reduced the time required for evaporation and ignition.

Detection and quantitation of Bacillus cereus, Staphylococcus aureus, Salmonella Typhimurium and Escherichia coli O157:H7 by droplet digital PCR (Droplet Digital PCR을 이용한 Bacillus cereus, Staphylococcus aureus, Salmonella Typhimurium과 Escherichia coli O157:H7의 검출 및 정량)

  • Kim, Jin-Hee;Yoon, JinSun;Lee, Da-Young;Kim, Dongho;Oh, Se-Wook
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.454-460
    • /
    • 2016
  • In this study, we investigated the possibility of Droplet digital PCR (ddPCR) for detection of foodborne pathogens. ddPCR combines partitioning of PCR reactions into several thousands or millions of individual droplets in a water-oil emulsion, and counting of positive PCR reaction using flow cytometry. Four species of foodborne pathogens, Bacillus cereus, Staphylococcus aureus, Salmonella Typhimurium and Escherichia coli O157:H7, were used to quantify the target sequence with each of the designed primers and double stranded DNA-binding Evagreen dye. All tested foodborne pathogens showed a detection limit ranging from $100fg/{\mu}L$ to $10ng/{\mu}L$. It was concluded that ddPCR could be used to detect very low concentrations of foodborne pathogens from complex food matrices. For multi-detection of target pathogens, we also tested the samples using multiplex ddPCR and obtained successful results.

Investigation of Droplet Growth and Heat Transfer Characteristics during Dropwise Condensation on Hydrophobic Copper Surface (소수성 구리 표면에서의 액적 응축에 관한 액적 성장 및 열전달 특성 연구)

  • Lee, Hyung Ju;Jeong, Chan Ho;Kim, Dae Yun;Moon, Joo Hyun;Lee, Jae Bin;Lee, Seong Hyuk
    • Journal of ILASS-Korea
    • /
    • v.23 no.3
    • /
    • pp.149-153
    • /
    • 2018
  • The present study investigates the heat transfer characteristics of droplet growth during dropwise condensation on the hydrophobic copper surface. We use the copper specimen coated by the self-assembled layer and conduct the real-time measurement of droplet size and spatial distribution of condensates during condensation with the use of the K2 lens (long distance microscope lens) and CMOS camera. The temperatures are measured by three RTDs (resistance temperature detectors) that are located through the holes made in the specimen. The surface temperature is estimated by the measured temperatures with the use of the one-dimensional conduction equation. It is observed that the droplets on the surface are growing up and merging, causing larger droplets. The experimental results show that there are three distinct regimes; in the first regime, individual small droplets are created on the surface in the early stage of condensation, and they are getting larger owing to direct condensation and coalescence with other droplets. In the second and third regimes, the coalescence occurs mainly, and the droplets are detached from the surface. Also, the fall-off time becomes faster as the surface wettability decreases. In particular, the heat transfer coefficient increases substantially with the decrease in wettability because of faster removal of droplets on the surfaces for lower wettability.

Automatic $St{\ddot{o}}ckigt$ Sizing Test Using Hue Value Variation of a Droplet

  • Kim, Jae-Ok;Kim, Chul-Hwan;Lee, Young-Min;Kim, Gyeong-Yun;Shin, Tae-Gi;Park, Chong-Yawl
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06b
    • /
    • pp.227-230
    • /
    • 2006
  • The $St{\ddot{o}}ckigt$ sizing test of the most-commonly used sizing tests is easily influenced by the individual testers' bias in recognizing red coloration. Therefore the test had to be modified to improve its reliability and reproducibility by automated recognition of a coloration procedure during testing. In order to achieve this, all measured variables occurring during the $St{\ddot{o}}ckigt$ test was first be analyzed and then reflected in the new automatic system. Secondly, the most important principle applied was to transform the RGB values of the droplet image to hue (H), saturation (S) and value (V) respectively. This is because RGB cannot be used as a color standard, owing to RGB's peculiarity of being seriously affected by the observer's point of view. Therefore, the droplet color had to be separated into three distinct factors, namely the HSV values, in order to allow linear analysis of the droplet color. When the average values of the vectors calculated during color variation from yellow to brown were plotted against time, it was possible to determine the vector value of hue, the most sensitive factor among HSV, at the specific time by differentiation of a function when it exceeds the critical point. Then, the specific time consumed up to the critical point was regarded as the $St{\ddot{o}}ckigt$ sizing degree. The conventional method took more time to recognize an ending point of coloration than the automatic method, and in addition the error ranges of the conventional sizing degrees on the specific addition points of AKD were wider than those of the automatic method.

  • PDF

Sensitivity Test of the Parameterization Methods of Cloud Droplet Activation Process in Model Simulation of Cloud Formation (구름방울 활성화 과정 모수화 방법에 따른 구름 형성의 민감도 실험)

  • Kim, Ah-Hyun;Yum, Seong Soo;Chang, Dong Yeong
    • Atmosphere
    • /
    • v.28 no.2
    • /
    • pp.211-222
    • /
    • 2018
  • Cloud droplet activation process is well described by $K{\ddot{o}}hler$ theory and several parameterizations based on $K{\ddot{o}}hler$ theory are used in a wide range of models to represent this process. Here, we test the two different method of calculating the solute effect in the $K{\ddot{o}}hler$ equation, i.e., osmotic coefficient method (OSM) and ${\kappa}-K{\ddot{o}}hler$ method (KK). To do that, each method is implemented in the cloud droplet activation parameterization module of WRF-CHEM (Weather Research and Forecasting model coupled with Chemistry) model. It is assumed that aerosols are composed of five major components (i.e., sulfate, organic matter, black carbon, mineral dust, and sea salt). Both methods calculate similar representative hygroscopicity parameter values of 0.2~0.3 over the land, and 0.6~0.7 over the ocean, which are close to estimated values in previous studies. Simulated precipitation, and meteorological variables (i.e., specific heat and temperature) show good agreement with reanalysis. Spatial patterns of precipitation and liquid water path from model results and satellite data show similarity in general, but on regional scale spatial patterns and intensity show some discrepancy. However, meteorological variables, precipitation, and liquid water path do not show significant differences between OSM and KK simulations. So we suggest that the relatively simple KK method can be a good alternative to the OSM method that requires various information of density, molecular weight and dissociation number of each individual species in calculating the solute effect.

Extraction of Sizes and Velocities of Spray Droplets by Optical Imaging Method

  • Choo, Yeonjun;Kang, Boseon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1236-1245
    • /
    • 2004
  • In this study, an optical imaging method was developed for the measurements of the sizes and velocities of droplets in sprays. Double-exposure single-frame spray images were captured by the imaging system. An image processing program was developed for the measurements of the sizes and positions of individual particles including separation of the overlapped particles and particle tracking and pairing at two time instants. To recognize and separate overlapping particles, the morphological method based on watershed segmentation as well as separation using the perimeter and convex hull of image was used consecutively. Better results in separation were obtained by utilization of both methods especially for the multiple or heavily-overlapped particles. The match probability method was adopted for particle tracking and pairing after identifying the positions of individual particles and it produced good matching results even for large particles like droplets in sprays. Therefore, the developed optical imaging method could provide a reliable way of analyzing the motion and size distribution of droplets produced by various sprays and atomization devices.

Automatic Color Recognition System for Stockigt Sizing Test (II) - Application of the automatic recognition principle of red coloration for developing the novel automatic system - (스테키히트 시험용 자동발색인지 시스템 개발을 위한 기초 연구(II) -자동 발색 인지 원리를 적용한 발색 자동인지시스템-)

  • Kim, Jae-Ok;Kim, Chul-Hwan;Park, Chong-Yawl;Kwon, Oh-Chul
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.1 s.109
    • /
    • pp.73-81
    • /
    • 2005
  • Stockigt sizing test, which is readily affected by individual tester's bias as well as testing conditions in recognizing red coloration, had to be modified to improve its reliability and reproducibility. The novel testing system with the automatic recognizing program of red coloration was developed with the auxiliary equipments including an automatic liquid dispenser and a specimen shifter. The analysis program used a hue value of a droplet image in recognizing a point of time on red coloration instead of RGB values that are not similar to human perception of color. Hue was more sensitive in recognizing the red coloration of a droplet than the other two factors, Saturation and Value. During the test, the program records the time consumed up to a specific hue value of a droplet on a specimen. Differently from the conventional test, the automatic test could obtain a reliable and reproducible sizing degree with a minor error. Furthermore, the Stockigt sizing degree measured by the automatic system showed great correlations with contact angle and Hercules sizing degree. It means that such great correlations will contribute to the development of an integrated measuring system capable of predicting contact angle, surface tension, surface energy and Hercules sizing degree of paper and paperboards through the Stbckigt sizing test. It was meaningful to note that the automatic system for Stbckigt sizing test might be able to used to predict contact angle, Hercules and Cobb sizing degree, based upon the high correlation coefficients.