• 제목/요약/키워드: Individual Heterozygosity

검색결과 51건 처리시간 0.025초

Genetic Diversity of Indigenous Cattle Populations in Bhutan: Implications for Conservation

  • Dorji, T.;Hanotte, O.;Arbenz, M.;Rege, J.E.O.;Roder, W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권7호
    • /
    • pp.946-951
    • /
    • 2003
  • The Genetic diversity and relationship of native Siri (Bos indicus) cattle populations of Bhutan were evaluated using 20 microsatellite markers. A total of 120 Siri cattle were sampled and were grouped into four populations according to their geographical locations which were named Siri West, Siri South, Siri Central and Siri East cattle. For each, 30 individuals were sampled. In addition, 30 samples each of Indian Jaba (B. indicus), Tibetan Goleng (B. taurus), Nepal Hill cattle (B. indicus), Holstein Friesian (B.taurus) and Mithun (B. frontalis) were typed. The mean number of alleles per loci (MNA) and observed heterozygosity (Ho) were high in the Siri populations ($MNA=7.2{\pm}0.3$ to $8.9{\pm}0.5$ and $Ho=0.67{\pm}0.04$ to $0.73{\pm}0.03$). The smallest coefficient of genetic differentiation and genetic distance ($F_{ST}=0.015$ and $D_A=0.073$) were obtained between Siri West and Siri Central populations. Siri East population is genetically distinct from the other Siri populations being close to the Indian Jaba ($F_{ST}=0.024$ and $D_A=0.084$). A high bootstrap value of 96% supported the close relationship of Siri South, Siri Central and Siri West, while the relationship between Siri East and Jaba was also supported by a high bootstrap value (82%). Data from principal component analysis and individual assignment test were in concordance with the inference from genetic distance and differentiation. In conclusion we identified two separate Siri cattle populations in Bhutan at the genetic level. One population included Siri cattle sampled from the West, Central and South of the country and the other Siri cattle was sampled from the East of the country. We suggest that Siri cattle conservation program in Bhutan should focus on the former population as it has received less genetic influence from other cattle breeds.

Assessment of Genetic Diversity in Different Populations of Raily Ecorace of Indian Tasar Silkworm, Antheraea Mylitta Drury Using ISSR Markers

  • Srivastava, Ashok Kumar;Kar, Prasanta Kumar;Sinha, Ravibhushan;Sinha, Manoj Kumar;Vijayaprakash, Nanjappa Basavappa
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제19권2호
    • /
    • pp.249-253
    • /
    • 2009
  • Raily ecorace of Indian tasar silkworm is wild in nature and distributed abundantly in dense deciduous forest on Shorea robusta (Sal) in Bastar ($17^{\circ}4'$ and $20^{\circ}34'$ N, $80^{\circ}15'$ and $82^{\circ}15'$ E and altitude ranging from 150 to 1200 mMSL) forest ranges of Chhattisgarh, India. It is represented by about 20 populations. Out of those, eleven populations showed intra- as well as inter- population variability based on phenotypic expression and also in major economic traits viz. cocoon weight, shell weight, filament length and denier. Genetic diversity in these eleven populations was studied using Inter-Simple Sequence Repeat (ISSR) markers. The band profiles generated with eight ISSR primers have depicted variation in band size. All the primers exhibited polymorphism which is an indicative of the genetic variation in individual Raily silkworm. Among the populations, total polymorphism recorded was 76%. The population genetic aspects assessed through POPGENE software package are discussed in the paper. Nei's gene diversity (h) ranged from 0.194 to 0.337 exhibiting high heterozygosity. Relevance of the present study is of high significance in formulating conservation strategies and sustainable utilization of the economically important Raily ecorace of Antheraea mylitta.

Study of Genetic Diversity among Simmental Cross Cattle in West Sumatra Based on Microsatellite Markers

  • Agung, Paskah Partogi;Saputra, Ferdy;Septian, Wike Andre;Lusiana, Lusiana;Zein, Moch. Syamsul Arifin;Sulandari, Sri;Anwar, Saiful;Wulandari, Ari Sulistyo;Said, Syahruddin;Tappa, Baharuddin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권2호
    • /
    • pp.176-183
    • /
    • 2016
  • A study was conducted to assess the genetic diversity among Simmental Cross cattle in West Sumatra using microsatellite DNA markers. A total of 176 individual cattle blood samples was used for obtaining DNA samples. Twelve primers of microsatellite loci as recommended by FAO were used to identify the genetic diversity of the Simmental Cross cattle population. Multiplex DNA fragment analysis method was used for allele identification. All the microsatellite loci in this study were highly polymorphic and all of the identified alleles were able to classify the cattle population into several groups based on their genetic distance. The heterozygosity values of microsatellite loci in this study ranged from 0.556 to 0.782. The polymorphism information content (PIC) value of the 12 observed loci is high (PIC>0.5). The highest PIC value in the Simmental cattle population was 0.893 (locus TGLA53), while the lowest value was 0.529 (locus BM1818). Based on the genetic distance value, the subpopulation of the Simmental Cross-Agam and the Simmental Cross-Limapuluh Kota was exceptionally close to the Simmental Purebred thus indicating that a grading-up process has taken place with the Simmental Purebred. In view of the advantages possessed by the Simmental Cross cattle and the evaluation of the genetic diversity results, a number of subpopulations in this study can be considered as the initial (base) population for the Simmental Cross cattle breeding programs in West Sumatra, Indonesia.

Discrimination of Korean Native Chicken Lines Using Fifteen Selected Microsatellite Markers

  • Seo, D.W.;Hoque, M.R.;Choi, N.R.;Sultana, H.;Park, H.B.;Heo, K.N.;Kang, B.S.;Lim, H.T.;Lee, S.H.;Jo, C.;Lee, J.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권3호
    • /
    • pp.316-322
    • /
    • 2013
  • In order to evaluate the genetic diversity and discrimination among five Korean native chicken lines, a total of 86 individuals were genotyped using 150 microsatellite (MS) markers, and 15 highly polymorphic MS markers were selected. Based on the highest value of the number of alleles, the expected heterozygosity (He) and polymorphic information content (PIC) for the selected markers ranged from 6 to 12, 0.466 to 0.852, 0.709 to 0.882 and 0.648 to 0.865, respectively. Using these markers, the calculated genetic distance (Fst), the heterozygote deficit among chicken lines (Fit) and the heterozygote deficit within chicken line (Fis) values ranged from 0.0309 to 0.2473, 0.0013 to 0.4513 and -0.1002 to 0.271, respectively. The expected probability of identity values in random individuals (PI), random half-sib ($PI_{half-sibs}$) and random sibs ($PI_{sibs}$) were estimated at $7.98{\times}10^{-29}$, $2.88{\times}10^{-20}$ and $1.25{\times}10^{-08}$, respectively, indicating that these markers can be used for traceability systems in Korean native chickens. The unrooted phylogenetic neighbor-joining (NJ) tree was constructed using 15 MS markers that clearly differentiated among the five native chicken lines. Also, the structure was estimated by the individual clustering with the K value of 5. The selected 15 MS markers were found to be useful for the conservation, breeding plan, and traceability system in Korean native chickens.

Analysis of genetic diversity for cattle parentage testing using microsatellite markers (소의 친자감정을 위한 Microsatellite markers의 유전적 다양성 분석)

  • Cho, Gil-jae;Yang, Young-jin;Lee, Kil-wang
    • Korean Journal of Veterinary Research
    • /
    • 제44권2호
    • /
    • pp.287-292
    • /
    • 2004
  • The objective of present study was to ascertain genetic diversity for cattle parentage testing. A total of 59 random cattle samples(29 Korean native cattle and 30 dairy cows) were genotyped by using 11 microsatellite loci(BM1824, BM2113, ETH10, ETH225, EH3, INRA23, SPS115, TGLA122, TGLA227, TGLA53, and TGLA126). This method consisted of multiplexing PCR procedure and showed reasonable amplification of all PCR products. Genotyping was performed with an ABI 310 genetic analyzer. The number of alleles per locus varied from 5 to 11 with a mean value of 6.73 in the Korean native cattle(KNC), 4 to 9 with a mean of 5.91 in dairy cows(DC). Expected heterozygosity was ranged 0.534~0.855(mean 0.732), 0.370~0.866(mean 0.692) in the KNC and DC, respectively. PIC value was ranged 0.485~0.821(mean 0.684), 0.336~0.834(mean 0.640) in the KNC and DC, respectively. Of the 11 markers, 7 markers(ETH10, EH3, INRA23, SPS115, TGLA122, TGLA227, TGLA53) and 3 markers(INRA23, TGLA227, TGLA53) have relatively high PIC value (>0.7) in the KNC and DC, respectively. The total exclusion probability of 11 microsatellite loci was 0.9997 and 0.9991 in the KNC and DC, respectively. These results present basic information for developing a system for parentage verification and individual identification in the KNC and DC.

Genetic diversity and relationship of Korean chicken breeds using 12 microsatellite markers

  • Kim, Yesong;Yun, Ji Hye;Moon, Seon Jeong;Seong, Jiyeon;Kong, Hong Sik
    • Journal of Animal Reproduction and Biotechnology
    • /
    • 제36권3호
    • /
    • pp.154-161
    • /
    • 2021
  • A number of Korean Chicken breeds were registered in Domestic Animal Diversity Information System (DAD-IS, http://dad.fao.org/) of the Food and Agriculture Organization (FAO). Evaluation of genetic diversity and relationship of local breeds is an important factor towards the identification of unique and valuable genetic resources. Therefore, this study aimed to analysis the genetic diversity and relationship of 22 Korean Chicken breeds using 12 microsatellite (MS) markers. The mean number of alleles for each variety was 5.52, ranging from a 3.75 (Leghorn F; NF) to a 7.0 (Ross). The most diverse breed was the Hanhyup3 (HCC), which had the highest expected heterozygosity (HExp) (0.754) and polymorphic information content (PIC) (0.711). The NF was the least diverse population, having the lowest HExp (0.467) and PIC (0.413). As a result of the principal coordinates analysis (PCoA) and factorial correspondence analysis (FCA) confirmed that Hy-line Brown (HL) and Lohmann Brown (LO) are very close to each other and that Leghorn and Rhode Island Red (RIR) are clearly distinguished from other groups. Thus, the reliability and power of identification using 12 types of MS markers were improved, and the genetic diversity and probability of individual discrimination were confirmed through statistical analysis. This study is expected to be used as basic data for the identification of Korean chicken breeds, and our results indicated that these multiplex PCR marker sets will have considerable applications in population genetic structure analysis.

Investigation of Microsatellite Markers for Traceability and Individual Discrimination of Korean Native Ducks (한국 토종오리의 개체 식별 및 품종 구분을 위한 Microsatellite 마커 탐색)

  • Seo, Dong Won;Sultana, Hasina;Choi, Nu Ri;Kim, Yeon Su;Jin, Shil;Heo, Kang Nyeong;Jin, Seon Deok;Lee, Jun Heon
    • Korean Journal of Poultry Science
    • /
    • 제42권1호
    • /
    • pp.1-8
    • /
    • 2015
  • Recently, duck meat consumption has been rapidly increased because consumers recognized duck meat for healthy food. In relation to this, Korean duck industry need to develop Korean native duck (KND) breed for both conservation perspective and self-sufficient of the breeding stocks. In this study, 24 microsatellite (MS) markers were investigated for classification of KND and commercial duck (CD) breeds in the Korean market. Using these MS markers, the calculated number of alleles (K), expected heterozygosity (He) values and polymorphic information contents (PIC) were 1~16, 0~0.865 and 0~0.841, respectively. Also, the expected probability of identical values in random individuals (PI), random sib ($PI_{sib}$) and random half-sib ($PI_{half-sib}$) were estimated as $1.64{\times}10^{-16}$, $2.60{\times}10^{-7}$ and $1.30{\times}10^{-12}$, respectively. The results indicated that the expected probabilities of identity powers were enough for the individual identification. However, KND and CD breeds were not fully discriminated well using the 24 MS markers, which may CD and KND has shared same origin or crossbred. Therefore, further studies will be ultimately needed for developing a genetically pure line of KND breed even though the DNA markers used. Finally, these results will provide useful information for individual traceability system in ducks.

Establishment of a Microsatellite Marker Set for Individual, Pork Brand and Product Origin Identification in Pigs (돼지 브랜드 식별 및 원산지 추적에 활용 가능한 Microsatellite Marker Set의 확립)

  • Lim, Hyun-Tae;Seo, Bo-Yeong;Jung, Eun-Ji;Yoo, Chae-Kyoung;Zhong, Tao;Cho, In-Cheol;Yoon, Du-Hak;Lee, Jung-Gyu;Jeon, Jin-Tae
    • Journal of Animal Science and Technology
    • /
    • 제51권3호
    • /
    • pp.201-206
    • /
    • 2009
  • Seventeen porcine microsatellite (MS) markers recommended by the EID+DNA Tracing EU project, ISAG and Roslin institute were selected for the use in porcine individual and brand identification. The MSA, CERVUS, FSTAT, GENEPOP and API-CALC programs were applied for calculating heterozygosity indices. By considering the hetreozygosity value and PCR product size of each marker, we established a MS marker set composed of 13 MS markers (SW936, SW951, SW787, S00090, S0026, SW122, SW857, S0005, SW72, S0155, S0225, SW24 and SW632) and two sexing markers. The expected probability of identity among genotypes of random individuals (PI), probability of identity among genotypes from random half sibs ($PI_{half-sibs}$) and among genotypes of random individuals, probability of identity among genotypes from random sibs($PI_{sibs}$) were estimated as $2.47\times10^{-18}$, $6.39\times10^{-13}$ and $1.08\times10^{-8}$, respectively. The results indicate that the established marker set can provide a sufficient discriminating power in both individual and parentage identification for the commercial pigs produced in Korea.

Rediscovery of haploid breeding in the genomics era (유전체 시대에 반수체 육종의 재발견)

  • Lee, Seulki;Kim, Jung Sun;Kang, Sang-Ho;Sohn, Seong-Han;Won, So Youn
    • Journal of Plant Biotechnology
    • /
    • 제43권1호
    • /
    • pp.12-20
    • /
    • 2016
  • Advances in DNA sequencing technologies have contributed to revolutionary understanding of many fundamental biological processes. With unprecedented cost-effective and high-throughput sequencing, a single laboratory can afford to de novo sequence the whole genome for species of interest. In addition, population genetic studies have been remarkably accelerated by numerous molecular markers identified from unbiased genome-wide sequences of population samples. As sequencing technologies have evolved very rapidly, acquiring appropriate individual plants or populations is a major bottleneck in plant research considering the complex nature of plant genome, such as heterozygosity, repetitiveness, and polyploidy. This challenge could be overcome by the old but effective method known as haploid induction. Haploid plants containing half of their sporophytic chromosomes can be rapidly generated mainly by culturing gametophytic cells such as ovules or pollens. Subsequent chromosome doubling in haploid plants can generate stable doubled haploid (DH) with perfect homozygosity. Here, classical methodology to generate and identify haploid plants or DH are summarized. In addition, haploid induction by epigenetic regulation of centromeric histone is explained. Furthermore, the utilization of haploid plant in the genomics era is discussed in the aspect of genome sequencing project and population genetic studies.

Genetic Diversity and Spatial Genetic Structure of Populus koreana Population in Mt. Odae, Korea (오대산 물황철나무(Populus koreana) 집단의 유전다양성 및 공간적 유전구조 분석)

  • Shin, Sookyung;Song, Jeong-Ho;Lim, Hyo-In;Jang, Kyung-Hwan;Hong, Kyung-Nak;Lee, Jei-Wan
    • Journal of Korean Society of Forest Science
    • /
    • 제103권1호
    • /
    • pp.59-64
    • /
    • 2014
  • This study describes analysis of genetic diversity and spatial genetic structure of Korean poplar (Populus koreana Rehder) in Mt. Odae using I-SSR markers. P. koreana is a deciduous broad-leaved tree species that primarily grows in the alpine valleys of China, Russia and North Korea. In South Korea, P. koreana is found limitedly in Gangwon province. Especially, the population in Mt. Odae is located on the southern limit line, its importance is emphasized from the genetic resource conservation perspective. The Shannon's diversity (I=0.230) and the expected heterozygosity (He=0.151) were relatively low as compared with those of other plant species. Spatial autocorrelation analysis using Tanimoto's distance showed that the genetic patch was founded within 400 m. It is suggested that individual trees for ex situ conservation should be sampled with a minimum distance of 400 m between trees.