Browse > Article
http://dx.doi.org/10.5010/JPB.2016.43.1.12

Rediscovery of haploid breeding in the genomics era  

Lee, Seulki (Genomics Division, Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration)
Kim, Jung Sun (Genomics Division, Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration)
Kang, Sang-Ho (Genomics Division, Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration)
Sohn, Seong-Han (Genomics Division, Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration)
Won, So Youn (Genomics Division, Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration)
Publication Information
Journal of Plant Biotechnology / v.43, no.1, 2016 , pp. 12-20 More about this Journal
Abstract
Advances in DNA sequencing technologies have contributed to revolutionary understanding of many fundamental biological processes. With unprecedented cost-effective and high-throughput sequencing, a single laboratory can afford to de novo sequence the whole genome for species of interest. In addition, population genetic studies have been remarkably accelerated by numerous molecular markers identified from unbiased genome-wide sequences of population samples. As sequencing technologies have evolved very rapidly, acquiring appropriate individual plants or populations is a major bottleneck in plant research considering the complex nature of plant genome, such as heterozygosity, repetitiveness, and polyploidy. This challenge could be overcome by the old but effective method known as haploid induction. Haploid plants containing half of their sporophytic chromosomes can be rapidly generated mainly by culturing gametophytic cells such as ovules or pollens. Subsequent chromosome doubling in haploid plants can generate stable doubled haploid (DH) with perfect homozygosity. Here, classical methodology to generate and identify haploid plants or DH are summarized. In addition, haploid induction by epigenetic regulation of centromeric histone is explained. Furthermore, the utilization of haploid plant in the genomics era is discussed in the aspect of genome sequencing project and population genetic studies.
Keywords
Next-generation sequencing; Inbred; Tissue culture; Genome; Population;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Bandillo N, Raghavan C, Muyco PA, Sevilla MAL, Lobina IT, Dilla-Ermita CJ, Tung C-W, McCouch S, Thomson M, Mauleon R (2013) Multi-parent advanced generation inter-cross (MAGIC) populations in rice: progress and potential for genetics research and breeding. Rice 6:11   DOI
2 Blakeslee AF, Belling J, Farnham ME, Bergner AD (1922) A haploid mutant in the jimson weed, "Datura Stramonium". Science 55:646-647   DOI
3 Consortium PGS (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189-195   DOI
4 D'Hont A, Denoeud F, Aury J-M, Baurens F-C, Carreel F, Garsmeur O, Noel B, Bocs S, Droc G, Rouard M (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488:213-217   DOI
5 Denoeud F, Carretero-Paulet L, Dereeper A, Droc G, Guyot R, Pietrella M, Zheng C, Alberti A, Anthony F, Aprea G (2014) The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science 345:1181-1184   DOI
6 Diao W-P, Jia Y-Y, Song H, Zhang X-Q, Lou Q-F, Chen J-F (2009) Efficient embryo induction in cucumber ovary culture and homozygous identification of the regenerants using SSR markers. Scientia horticulturae 119:246-251   DOI
7 Dohm JC, Minoche AE, Holtgrawe D, Capella-Gutierrez S, Zakrzewski F, Tafer H, Rupp O, Sorensen TR, Stracke R, Reinhardt R, Goesmann A, Kraft T, Schulz B, Stadler PF, Schmidt T, Gabaldon T, Lehrach H, Weisshaar B, Himmelbauer H (2014) The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature 505:546-549   DOI
8 Ferrie AMR, Epp DJ, Keller WA (1995) Evaluation of Brassica rapa L. genotypes for microspore culture response and identification of a highly embryogenic line. Plant Cell Reports 14:580-584
9 Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, Gonzalez VM, Henaff E, Camara F, Cozzuto L, Lowy E (2012) The genome of melon (Cucumis melo L.). Proceedings of the National Academy of Sciences 109:11872-11877   DOI
10 Guha S, Maheshwari SC (1964) In vitro production of embryos from anthers of datura. Nature 204:497-497
11 Guha S, Maheshwari SC (1966) Cell division and differentiation of embryos in the pollen grains of datura in vitro. Nature 212:97-98   DOI
12 Han D-S, Niimi Y, Nakano M (1997) Regeneration of haploid plants from anther cultures of the Asiatic hybrid lily 'Connecticut King'. Plant cell, tissue and organ culture 47:153-158   DOI
13 Hofinger BJ, Huynh OA, Jankowicz-Cieslak J, Müller A, Otto I, Kumlehn J, Till BJ (2013) Validation of doubled haploid plants by enzymatic mismatch cleavage. Plant methods 9:43   DOI
14 Huang BE, George AW, Forrest KL, Kilian A, Hayden MJ, Morell MK, Cavanagh CR (2012) A multiparent advanced generation inter-cross population for genetic analysis in wheat. Plant biotechnology journal 10:826-839   DOI
15 Kasha K, Kao K (1970) High frequency haploid production in barley (Hordeum vulgare L.). Nature 225:874-876   DOI
16 Huang BE, Verbyla K, Verbyla A, Raghavan C, Singh V, Gaur P, Leung H, Varshney R, Cavanagh C (2015) MAGIC populations in crops: current status and future prospects. Theor Appl Genet 128:999-1017   DOI
17 Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B, Ni P (2009) The genome of the cucumber, Cucumis sativus L. Nature genetics 41:1275-1281   DOI
18 Jaillon O, Aury J-M, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463-467   DOI
19 Kim K-M, Nam W-I, Kwon Y-S, Sohn J-K (2004) Development of doubled-haploid population and construction of genetic map using SSR markers in rice. Korean J Plant Biotechnol 31:179-184   DOI
20 Kover PX, Valdar W, Trakalo J, Scarcelli N, Ehrenreich IM, Purugganan MD, Durrant C, Mott R (2009) A multiparent advanced generation inter-cross to fine-map quantitative traits in Arabidopsis thaliana. PLoS Genet 5:e1000551   DOI
21 Kristiansen K, Andersen S (1993) Effects of donor plant temperature, photoperiod, and age on anther culture response of Capsicum annuum L. Euphytica 67:105-109   DOI
22 Lu CS, Sharma HC, Ohm HW (1991) Wheat anther culture: effect of genotype and environmental conditions. Plant Cell, Tissue and Organ Culture 24:233-236   DOI
23 McKone MJ, Halpern SL (2003) The Evolution of Androgenesis. The American Naturalist 161:641-656   DOI
24 Mackay IJ, Bansept-Basler P, Barber T, Bentley AR, Cockram J, Gosman N, Greenland AJ, Horsnell R, Howells R, O'Sullivan DM (2014) An eight-parent multiparent advanced generation inter-cross population for winter-sown wheat: creation, properties, and validation. G3: $Genes{\mid}\;Genomes{\mid}\;Genetics$ 4:1603-1610
25 Maheshwari S, Tan EH, West A, Franklin F, Comai L, Chan S (2015) Naturally occurring differences in CENH3 affect chromosome segregation in zygotic mitosis of hybrids. PLoS genetics 11:e1004970-e1004970   DOI
26 Malik MR, Wang F, Dirpaul JM, Zhou N, Hammerlindl J, Keller W, Abrams SR, Ferrie AMR, Krochko JE (2008) Isolation of an embryogenic line from non-embryogenic Brassica napus cv. Westar through microspore embryogenesis. Journal of Experimental Botany 59:2857-2873   DOI
27 Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH, Senin P, Wang W, Ly BV, Lewis KL (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991-996   DOI
28 Mohammadi PP, Moieni A, Ebrahimi A, Javidfar F (2012) Doubled haploid plants following colchicine treatment of microsporederived embryos of oilseed rape (Brassica napus L.). Plant Cell, Tissue and Organ Culture 108:251-256   DOI
29 Murovec J, Bohanec B (2011) Haploids and doubled haploids in plant breeding, p. 87-106. In: I.Y. Abdurakhmonov (ed.). Plant Breeding. InTech, Croatia.
30 Murovec J, Bohanec B (2013) Haploid induction in Mimulus aurantiacus Curtis obtained by pollination with gamma irradiated pollen. Scientia Horticulturae 162:218-225   DOI
31 Pascual L, Desplat N, Huang BE, Desgroux A, Bruguier L, Bouchet JP, Le QH, Chauchard B, Verschave P, Causse M (2015) Potential of a tomato MAGIC population to decipher the genetic control of quantitative traits and detect causal variants in the resequencing era. Plant biotechnology journal 13:565-577   DOI
32 Niizeki H, Oono K (1968) Induction of haploid rice plant from anther culture. Proceedings of the Japan Academy 44:554-557
33 Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin Y-C, Scofield DG, Vezzi F, Delhomme N, Giacomello S, Alexeyenko A (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497:579-584   DOI
34 Park C-H, Lee M-S, Choi D-G, Cho J-H, Hyun S-W, Hwang C-J, So J-D, Choi B-J (1990) Effect of pollen stage and growth regulators on anther culture of Pulsatilla koreana Nakai. Korean J Plant Tissue Culture 17:239-248
35 Pathirana R, Frew T, Hedderley D, Timmerman-Vaughan G, Morgan E (2011) Haploid and doubled haploid plants from developing male and female gametes of Gentiana triflora. Plant cell reports 30:1055-1065   DOI
36 Qin X, Rotino GL (1995) Chloroplast number in guard cells as ploidy indicator of in vitro-grown androgenic pepper plantlets. Plant Cell, Tissue and Organ Culture 41:145-149   DOI
37 Ravi M, Chan SW (2010) Haploid plants produced by centromeremediated genome elimination. Nature 464:615-618   DOI
38 Ryu J-H, Doo H-S, Kwon T-H (1992) Induction of haploid plants by anther culture in sesame. Korean J Plant Tissue Culture 19:171-177
39 San Noeum L (1976) Haploides d'Hordeum vulgare L. par culture in vitro d'ovaries non fecondes. Ann Amelior Plant 26:751-754
40 Sannemann W, Huang BE, Mathew B, Leon J (2015) Multi-parent advanced generation inter-cross in barley: high-resolution quantitative trait locus mapping for flowering time as a proof of concept. Molecular Breeding 35:1-16   DOI
41 Seguí-Simarro J (2010) Androgenesis Revisited. Bot Rev 76:377-404   DOI
42 Seymour DK, Filiault DL, Henry IM, Monson-Miller J, Ravi M, Pang A, Comai L, Chan SW, Maloof JN (2012) Rapid creation of Arabidopsis doubled haploid lines for quantitative trait locus mapping. Proceedings of the National Academy of Sciences 109:4227-4232   DOI
43 Shrestha S, Kang W-H (2009) Effect of genotype of donor plants on the success of anther culture in sweet pepper (Capsicum annuum L.). Korean Journal of Plant Resources 22:506-512
44 Smith R, Kamp M, Davies R (1981) Reduced plant size of haploid african violets. In Vitro 17:385-387   DOI
45 Tang F, Tao Y, Zhao T, Wang G (2006) In vitro production of haploid and doubled haploid plants from pollinated ovaries of maize (Zea mays). Plant cell, tissue and organ culture 84:233-237   DOI
46 Thomas TD (2008) The role of activated charcoal in plant tissue culture. Biotechnology Advances 26:618-631   DOI
47 Upadhyay A, Chacko A, Gandhimathi A, Ghosh P, Harini K, Joseph A, Joshi A, Karpe S, Kaushik S, Kuravadi N, Lingu C, Mahita J, Malarini R, Malhotra S, Malini M, Mathew O, Mutt E, Naika M, Nitish S, Pasha S, Raghavender U, Rajamani A, Shilpa S, Shingate P, Singh H, Sukhwal A, Sunitha M, Sumathi M, Ramaswamy S, Gowda M, Sowdhamini R (2015) Genome sequencing of herb Tulsi (Ocimum tenuiflorum) unravels key genes behind its strong medicinal properties. BMC Plant Biology 15:212   DOI
48 Wang H, Dong B, Jiang J, Fang W, Guan Z, Liao Y, Chen S, Chen F (2014) Characterization of in vitro haploid and doubled haploid Chrysanthemum morifolium plants via unfertilized ovule culture for phenotypical traits and DNA methylation pattern. Frontiers in plant science 5:738
49 Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D (2010) The genome of the domesticated apple (Malus $\times$ domestica Borkh.). Nature genetics 42:833-839   DOI
50 Verde I, Abbott AG, Scalabrin S, Jung S, Shu S, Marroni F, Zhebentyayeva T, Dettori MT, Grimwood J, Cattonaro F (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nature genetics 45:487-494   DOI
51 Wedzony M, Forster BP, Zur I, Golemiec E, Szechynska-Hebda M, Dubas E, Gotebiowska G, Wedzony M (2009) Progress in doubled haploid technology in higher plants, p 1-33. In: A. Touraev, B. Forster, SM Jain (eds). Advances In Haploid Production In Higher Plants. Springer, Netherlands.
52 Xiao L, Yang G, Zhang L, Yang X, Zhao S, Ji Z, Zhou Q, Hu M, Wang Y, Chen M (2015) The resurrection genome of Boea hygrometrica: A blueprint for survival of dehydration. Proceedings of the National Academy of Sciences 112:5833-5837   DOI
53 Zeng X, Long H, Wang Z, Zhao S, Tang Y, Huang Z, Wang Y, Xu Q, Mao L, Deng G (2015) The draft genome of Tibetan hulless barley reveals adaptive patterns to the high stressful Tibetan Plateau. Proceedings of the National Academy of Sciences 112:1095-1100   DOI
54 Zhang H, Tan E, Suzuki Y, Hirose Y, Kinoshita S, Okano H, Kudoh J, Shimizu A, Saito K, Watabe S, Asakawa S (2014) Dramatic improvement in genome assembly achieved using doubled-haploid genomes. Scientific Reports 4:6780   DOI
55 Zhang X, Wu Q, Li X, Zheng S, Wang S, Guo L, Zhang L, Custers JB (2011) Haploid plant production in Zantedeschia aethiopica 'Hong Gan' using anther culture. Scientia horticulturae 129:335-342   DOI