• 제목/요약/키워드: Indium tin oxide (ITO) electrode

검색결과 209건 처리시간 0.023초

Fabrication and characteristics of ITO thin films on CR39 substrate for transparent OTFT

  • Kwon, Sung-Yeol
    • 센서학회지
    • /
    • 제16권3호
    • /
    • pp.229-233
    • /
    • 2007
  • The indium tin oxide (ITO) films were deposited on CR39 substrate using DC magnetron sputtering. The ITO thin films deposited at room temperature because CR39 substrate its glass-transition temperature is $130^{\circ}C$. The ITO thin films used bottom and top electrode and for organic thin film transparent transistors (OTFTs). The ITO thin film electrodes electrical properties and optical transparency properties in the visible wavelength range (300-800 nm) strongly dependent on volume of oxygen percent. For the optimum resistivity and transparency of the ITO thin film electrode achieved with a 75 W plasma power, 10 % volume of oxygen and a 27 nm/min deposition rate. Above 85 % transparency in the visible wavelength range (300-800 nm) measured without post annealing process and a low resistivity value $9.83{\times}10^{-4}{\Omega}cm$ was measured thickness of 300 nm. All fabrication process of ITO thin films did not exceed $80^{\circ}C$.

Zinc Tin Oxide 투명 박막트랜지스터의 특성에 미치는 소스/드레인 전극의 영향 (Influence of Source/Drain Electrodes on the Properties of Zinc Tin Oxide Transparent Thin Film Transistors)

  • 마대영;최무희
    • 한국전기전자재료학회논문지
    • /
    • 제28권7호
    • /
    • pp.433-438
    • /
    • 2015
  • Zinc tin oxide transparent thin film transistors (ZTO TTFTs) were fabricated by using $n^+$ Si wafers as gate electrodes. Indium (In), aluminum (Al), indium tin oxide (ITO), silver (Ag), and gold (Au) were employed for source and drain electrodes, and the mobility and the threshold voltage of ZTO TTFTs were observed as a function of electrode. The ZTO TTFTs adopting In as electrodes showed the highest mobility and the lowest threshold voltage. It was shown that Ag and Au are not suitable for the electrodes of ZTO TTFTs. As the results of this study, it is considered that the interface properties of electrode/ZTO are more influential in the properties of ZTO TTFTs than the conductivity of electrode.

고효율 플라즈마 디스플레이 패널을 위한 T-형 ITO 전극의 레이저 직접 패터닝시 레이저 스캔 속도의 영향 (Effect of Laser Scanning Speed on the Laser Direct Patterning of T-shaped Indium Tin Oxide (ITO) Electrode for High Luminous AC Plasma Display Panels)

  • 이조휘;조의식;권상직
    • 한국전기전자재료학회논문지
    • /
    • 제23권2호
    • /
    • pp.133-136
    • /
    • 2010
  • Laser direct patterning is one of new methods which are able to replace a conventional photolithography. In order reduce the fabrication cost and to improve the luminous efficiency of AC plasma display panels (PDPs), in this experiment, a Q-switched Nd:$YVO_4$ laser was used to fabricate T-shaped indium tin oxide (ITO) display electrodes. For the laser beam scanning speed from 100 mm/sec to 800 mm/sec, T-shaped ITO patterns were clearly obtained and investigated. The experimental results showed that the optimized T-shaped ITO electrode was obtained when the lasers scanning speed was 300 mm/s.

Polydimethylsiloxane 채널과 indium tin oxide 전극을 이용한 일회용 전기화학적 검출 시스템 (Disposable Microchip-Based Electrochemical Detector Using Polydimethylsiloxane Channel and Indium Tin Oxide Electrode)

  • 이인제;강치중;김용상;김주호
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제54권5호
    • /
    • pp.227-231
    • /
    • 2005
  • We have developed a microsystem with a capillary electrophoresis (CE) and an electrochemical detector (ECD). The microfabricated CE-ECD systems are adequate for a disposable type and the characteristics are optimized for an application to the electrochemical detection. The system was realized with polydimethylsiloxane (PDMS)-glass chip and indium tin oxide electrode. The injection and separation channels (80 um wide$\ast$40 um deep) were produced by moulding a PDMS against a microfabricated master with relatively simple and inexpensive methods. A CE-ECD systems were fabricated on the same substrate with the same fabrication procedure. The surface of PDMS layer and ITO-coated glass layer was treated with UV-Ozone to improve bonding strength and to enhance the effect of electroosmotic flow. For comparing the performance of the ITO electrodes with the gold electrodes, gold electrode microchip was fabricated with the same dimension. The running buffer was prepared by 10 mM 2-(N-morpholino)ethanesulfonic acid (MES) titrated to PH 6.5 using 0.1 N NaOH. We measured olectropherograms for the testing analytes consisted of catechol and dopamine with the different concentrations of 1 mM and 0.1 mM, respectively. The measured current peaks of dopamine and catechol are proportional to their concentrations. For comparing the performance of the ITO electrodes with the gold electrodes, electropherograms was measured for CE-ECD device with gold electrodes under the same conditions. Except for the base current level, the performances including sensitivity, stability, and resolution of CE-ECD microchip with ITO electrode are almost the same compared with gold electrode CE-ECD device. The disposable CE/ECD system showed similar results with the previously reported expensive system in the limit of detection and peak skew. When we are using disposable microchips, it is possible to avoid polishing electrode and reconditioning.

Study of ITO/ZnO/Ag/ZnO/ITO Multilayer Films for the Application of a very Low Resistance Transparent Electrode on Polymer Substrate

  • Han, Jin-Woo;Han, Jeong-Min;Kim, Byoung-Yong;Kim, Young-Hwan;Kim, Jong-Yeon;Ok, Chul-Ho;Seo, Dae-Shik
    • 한국전기전자재료학회논문지
    • /
    • 제20권9호
    • /
    • pp.798-801
    • /
    • 2007
  • Multilayer transparent electrodes, having a much lower electrical resistance than the widely used transparent conducting oxide electrodes, were prepared by using radio frequency magnetron sputtering. The multilayer structure consisted of five layers, indium tin oxided (ITO)/zinc oxide (ZnO)/Ag/zinc oxide (ZnO)/ITO. With about 50 nm thick ITO films, the multilayer showed a high optical transmittance in the visible range of the spectrum and had color neutrality. The electrical and optical properties of ITO/ZnO/Ag/ZnO/ITO multilayer were changed mainly by Ag film properties, which were affected by the deposition process of the upper layer. Especially ZnO layer was improved to adhesion of Ag and ITO. A high quality transparent electrode, having a resistance as low as and a high optical transmittance of 91% at 550 nm, was obtained. It could satisfy the requirement for the flexible OLED and LCD.

ITO/ZnO/Ag/ZnO/ITO Multilayers Films for the Application of a Very Low Resistance Transparent Electrode on Polymer Substrate

  • Ok, Chul-Ho;Han, Jin-Woo;Kim, Jong-Yeon;Kim, Byoung-Yong;Han, Jeong-Min;Moon, Hyun-Chan;Park, Kwang-Bum;Seo, Dae-Shik
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.397-397
    • /
    • 2007
  • Multilayer transparent electrodes, having a much lower electrical resistance than the widely used transparent conducting oxide electrodes, were prepared by using radio frequency magnetron sputtering. The multilayer structure consisted of five layers, indium tin oxided(ITO)/zinc oxide(ZnO)/Ag/oxide(ZnO)/ITO. With about 50nm thick ITO films, the multilayer showed a high optical transmittance in the visible range of the spectrum and had color neutrality. The electrical and optical properties of ITO/ZnO/Ag/ZnO/ITO multilayer were changed mainly by Ag film properties, which were affected by the deposition process of the upper layer. Especially ZnO layer was improved to adhesion of Ag and ITO. A high quality transparent electrode, having a resistance as low as and a high optical transmittance of 91% at 550nm, was obtained. It could satisfy the requirement for the flexible OLED and LCD.

  • PDF

차세대 투명전극 소재의 종류와 특성 (Materials and Characteristics of Emerging Transparent Electrodes)

  • 정문현;김세열;유도혁;김중현
    • 공업화학
    • /
    • 제25권3호
    • /
    • pp.242-248
    • /
    • 2014
  • 정보 통신 분야의 발전에 따라 기존의 전자 기기들은 평면성을 벗어나 투명 유연하고 깨지지 않는 특성이 요구되고 있다. 이러한 부가적인 특성을 갖춘 기기들의 제조를 위해서는 전극의 투명성과 유연성을 동시에 갖고 있어야 하지만, 현재 가장 대표적으로 이용되는 투명전극인 ITO (Indium Tin Oxide)는 유연하지 못하다는 단점과 자원적인 한계를 갖고 있다. 이에 따라 ITO의 한계를 극복하기 위해 다양한 물질들을 이용한 대체 재료 개발이 활발히 연구되고 있으며 대체 물질들의 복합화를 통해 더 향상된 물성을 발현시키기 위한 연구가 진행되고 있다. 본 총설에서는 ITO의 한계를 극복하고 투명전극으로서의 응용 가능한 대체 물질들에 대한 연구 현황을 정리하였다.

Prussian blue가 전착된 indium tin oxide전극을 이용한 전기화학적 검출기의 개발 (Development of an electrochemical detector using Prussian blue modified indium tin oxide electrode)

  • 이인제;김주호;강치중;김용상
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 C
    • /
    • pp.2404-2406
    • /
    • 2005
  • 본 연구에서는 전기촉매제를 사용하여 증가된 감도를 가지는 검출 시스템을 제작하였다. 전극과 검출물질 사이의 산화환원반응을 촉진시키기 위한 물질로 Prussian blue (PB)를 indium tin oxide (ITO) 전극에 전착하였다. 본 실험에서는 분석물질의 이동 및 분리를 위하여 모세관 전기영동방법을 사용하였으며 측정방법은 전류량법을 사용하였다. 전착된 PB 박막의 특성은 원자 현미경으로 분석하여 0.1V, 3min의 전착조건으로 최적화하였다. 전기 촉매제로써의 PB의 특성을 확인하기 위하여 ITO 전극만을 사용한 전기화학적 검출기와 비교하였으며 본 연구에서 제안된 검출기의 감도가 20배정도 더 좋다는 것을 확인하였다.

  • PDF

Electrical, optical, and thermal properties of AZO co-sputtered ITO electrode for organic light emitting diodes

  • Park, Young-Seok;Kim, Han-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.416-419
    • /
    • 2008
  • In this study, we report on the characteristics of Aldoped ZnO (AZO) co-sputtered indium tin oxide (ITO) films prepared by dual target direct current (DC) magnetron sputtering at room temperature for organic light emitting diodes (OLEDs). The electrical and optical properties of co-sputtered IAZTO electrode were critically dependent on the DC power of AZO. Furthermore, the characteristics of co-sputtered IAZTO electrode were influenced by rapid thermal annealing temperature.

  • PDF

나이프 코팅 기법으로 제작한 은 나노와이어 투명전극 기반의 대면적 ITO-Free 유기 태양전지 (Silver Nanowire Anode-Based, Large-Area Indium Tin Oxide-Free Organic Photovoltaic Cells Fabricated by the Knife Coating Method)

  • 한규효;김건우;이재학;석재영;양민양
    • 한국생산제조학회지
    • /
    • 제24권1호
    • /
    • pp.43-48
    • /
    • 2015
  • Silver nanowire (AgNW) is a material that is increasingly being used for transparent electrodes, as a substitute for indium tin oxide (ITO), owing to its flexibility, high transmittance to sheet resistance ratio, and simple production process. This study involves manufacturing large-area organic photovoltaic cells (OPVs) deposited on AgNW electrodes. We compared the efficiency of OPVs with ITO and AgNW electrodes. The results verified that an OPV with an AgNW electrode performed better than that with an ITO electrode. Furthermore, by using the knife coating method, we successfully fabricated large-area OPVs without the loss of efficiency. Use of AgNW instead of ITO demonstrated that an OPV could be produced on various substrates by the solution process method, dropping the productions costs significantly. Additionally, by using the knife coating method, the process time and amount of wasted solution are reduced. This leads to an increase in the efficient fabrication of the OPV.