• Title/Summary/Keyword: Indium oxide

Search Result 1,236, Processing Time 0.032 seconds

Applicability of Serum Krebs von den lungen-6 as a Biological Exposure Index for Workers Exposed to Indium (인듐 노출 근로자를 위한 생물학적 노출지표로써 혈청 Krebs von den lungen-6의 활용가능성)

  • Won, Yong Lim;Yi, Gwang Yong;Lee, Mi-Young;Kim, Eun-A
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.23 no.2
    • /
    • pp.108-113
    • /
    • 2013
  • Objectives: Although several cases of lung diseases caused by indium have been reported in Japan, the United States and China, South Korea, which is estimated to have been the world's largest consumer of indium, has not yet established a criteria for the diagnosis of lung diseases caused by indium exposure. In this study, we tried to determine the applicability of the Krebs von den lungen-6, which has been widely recognized for its use with interstitial lung disease in Japan, as a biological exposure index for indium. Methods: Methods: The analysis of indium in serum was conducted by inductively coupled plasma mass spectrometry and the analysis of KL-6 in serum was carried out using enzyme-linked immunosorbent assay kit. Results: The indium levels in serum were distributed from below the detection limit to a peak of $125.78{\mu}g/L$, and the values of the KL-6 were distributed from 104.5 U/mL to 2162.2 U/mL. The serum indium and KL-6 showed good correlation ($R^2$=0.389,pfortrend=0.000) and smoking did not affect the KL-6. Conclusions: The usefulness of KL-6 as a specific biomarker for interstitial lung disease has been recognized. In addition, it is expected that effective prevention of health problems can be achieved by determining the lung-damage progress at an early stage according to individual susceptibility.

Fabrication of IGZO-based Oxide TFTs by Electron-assisted Sputtering Process

  • Yun, Yeong-Jun;Jo, Seong-Hwan;Kim, Chang-Yeol;Nam, Sang-Hun;Lee, Hak-Min;O, Jong-Seok;Kim, Yong-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.273.2-273.2
    • /
    • 2014
  • Sputtering process has been widely used in Si-based semiconductor industry and it is also an ideal method to deposit transparent oxide materials for thin-film transistors (TFTs). The oxide films grown at low temperature by conventional RF sputtering process are typically amorphous state with low density including a large number of defects such as dangling bonds and oxygen vacancies. Those play a crucial role in the electron conduction in transparent electrode, while those are the origin of instability of semiconducting channel in oxide TFTs due to electron trapping. Therefore, post treatments such as high temperature annealing process have been commonly progressed to obtain high reliability and good stability. In this work, the scheme of electron-assisted RF sputtering process for high quality transparent oxide films was suggested. Through the additional electron supply into the plasma during sputtering process, the working pressure could be kept below $5{\times}10-4Torr$. Therefore, both the mean free path and the mobility of sputtered atoms were increased and the well ordered and the highly dense microstructure could be obtained compared to those of conventional sputtering condition. In this work, the physical properties of transparent oxide films such as conducting indium tin oxide and semiconducting indium gallium zinc oxide films grown by electron-assisted sputtering process will be discussed in detail. Those films showed the high conductivity and the high mobility without additional post annealing process. In addition, oxide TFT characteristics based on IGZO channel and ITO electrode will be shown.

  • PDF

Transparent Conductive Indium Zinc Tin Oxide Thin Films for Solar Cell Applications

  • Damisih, Damisih;Lee, Hee-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.208-208
    • /
    • 2010
  • Indium zinc tin oxide (IZTO) thin films were studied as a possible alternative to indium tin oxide (ITO) films for providing low-cost transparent conducting oxide (TCO) for thin film photovoltaic devices. IZTO films were deposited onto glass substrates at room temperature. A dc/rf magnetron co-sputtering system equipped with a ceramic target of the same composition was used to deposit TCO films. Earlier studies showed that the resistivity value of $In_{0.6}Zn_{0.2}Sn_{0.2}O_{1.5}$ (IZTO20) films could be lowered to approximately $6{\times}10^{-4}ohm{\cdot}cm$ without sacrificing optical transparency and still maintaining amorphous structure through the optimization of process variables. The growth rate was kept at about 8 nm/min while the oxygen-to-argon pressure ratio varied from 0% to 7.5%. As-deposited films were always amorphous and showed strong oxygen pressure dependence of electrical resistivity and electron concentration values. Influence of forming gas anneal (FGA) at medium temperatures was also studied and proven effective in improving electrical properties. In this study, the chemical composition of the targets and the films varied around the $In_{0.6}Zn_{0.2}Sn_{0.2}O_{1.5}$ (IZTO20). It was the main objective of this paper to investigate how off-stoichiometry affected TCO characteristics including electrical resistivity and optical transmission. In addition to the composition effect, we have also studied how film properties changed with processing variables. IZTO thin films have shown their potential as a possible alternative to ITO thin films, in such way that they could be adopted in some applications where currently ITO and IZO thin films are being used. Our experimental results are compared to those obtained for commercial ITO thin films from solar cell application view point.

  • PDF

MEMS-Based Micro Sensor Detecting the Nitrogen Oxide Gases (산화질소 검출용 마이크로 가스센서 제조공정)

  • Kim, Jung-Sik;Yoon, Jin-Ho;Kim, Bum-Joon
    • Korean Journal of Materials Research
    • /
    • v.23 no.6
    • /
    • pp.299-303
    • /
    • 2013
  • In this study, a micro gas sensor for $NO_x$ was fabricated using a microelectromechanical system (MEMS) technology and sol-gel process. The membrane and micro heater of the sensor platform were fabricated by a standard MEMS and CMOS technology with minor changes. The sensing electrode and micro heater were designed to have a co-planar structure with a Pt thin film layer. The size of the gas sensor device was about $2mm{\times}2mm$. Indium oxide as a sensing material for the $NO_x$ gas was synthesized by a sol-gel process. The particle size of synthesized $In_2O_3$ was identified as about 50 nm by field emission scanning electron microscopy (FE-SEM). The maximum gas sensitivity of indium oxide, as measured in terms of the relative resistance ($R_s=R_{gas}/R_{air}$), occurred at $300^{\circ}C$ with a value of 8.0 at 1 ppm $NO_2$ gas. The response and recovery times were within 60 seconds and 2 min, respectively. The sensing properties of the $NO_2$ gas showed good linear behavior with an increase of gas concentration. This study confirms that a MEMS-based gas sensor is a potential candidate as an automobile gas sensor with many advantages: small dimension, high sensitivity, short response time and low power consumption.

Solution-Processed Inorganic Thin Film Transistors Fabricated from Butylamine-Capped Indium-Doped Zinc Oxide Nanocrystals

  • Pham, Hien Thu;Jeong, Hyun-Dam
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.494-500
    • /
    • 2014
  • Indium-doped zinc oxide nanocrystals (IZO NCs), capped with stearic acid (SA) of different sizes, were synthesized using a hot injection method in a noncoordinating solvent 1-octadecene (ODE). The ligand exchange process was employed to modify the surface of IZO NCs by replacing the longer-chain ligand of stearic acid with the shorter-chain ligand of butylamine (BA). It should be noted that the ligand-exchange percentage was observed to be 75%. The change of particle size, morphology, and crystal structures were obtained using a field emission scanning electron microscope (FE-SEM) and X-ray diffraction pattern results. In our study, the 5 nm and 10 nm IZO NCs capped with stearic acid (SA-IZO) were ligand-exchanged with butylamine (BA), and were then spin-coated on a thermal oxide ($SiO_2$) gate insulator to fabricate a thin film transistor (TFT) device. The films were then annealed at various temperatures: $350^{\circ}C$, $400^{\circ}C$, $500^{\circ}C$, and $600^{\circ}C$. All samples showed semiconducting behavior and exhibited n-channel TFT. Curing temperature dependent on mobility was observed. Interestingly, mobility decreases with the increasing size of NCs from 5 to 10 nm. Miller-Abrahams hopping formalism was employed to explain the hopping mechanism insight our IZO NC films. By focusing on the effect of size, different curing temperatures, electron coupling, tunneling rate, and inter-NC separation, we found that the decrease in electron mobility for larger NCs was due to smaller electronic coupling.

A Study on the Optical Characteristics of Multi-Layer Touch Panel Structure on Sapphire Glass (Sapphire Glass 기반 다층박막 터치패널구조의 광학특성 연구)

  • Kwak, Young Hoon;Moon, Seong Cheol;Lee, Ji Seon;Lee, Seong Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.3
    • /
    • pp.168-174
    • /
    • 2016
  • A conductive oxide-based sapphire glass indium tin oxide/metal electrode and the optical coating, through patterning process was studied in excellent optical properties and integrated touch panel has a high strength. Indium tin oxide conductive oxides of the sapphire glass to 0.3 A at DC magnetron sputtering method of 10 min, gas flow Ar 10 Sccm Ar, $O_2$ 1.0 Sccm the formation conditions of the thin film after annealing at $550^{\circ}C$ for 30min was achieved through a 86% transmittance. In addition, the coating 130 nm hollow silica sol-gel was to improve the optical transmittance of the indium tin oxide to 91%. For the measurement by the modeling hollow silica sol by Macleod simulation and calculated the average values of silica part to the presence or absence in analogy to actual. Refractive index value and the actual value of the material on the simulation the transmittance difference is it does not completely match the air region similar to the actual value (transmission) could be confirmed that the measurement is set to a value of between 5 nm and 10 nm.

Comparison of Dustiness of Eleven Nanomaterials using Voltex Shaker Method (볼텍스쉐이커를 이용한 11개 나노물질의 분진날림 비교)

  • Lee, Naroo;Park, Jinwoo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.3
    • /
    • pp.273-282
    • /
    • 2018
  • Objectives: Dustiness of nanomaterials is considered as exposure index of essential material. Research on dustiness of nanomaterial is needed to control exposure in workplaces. Method: Dustiness measurement using vortex shaker were installed in the laboratory. Nanomaterials, 1 g, was put in the glass test tube and shaked using vortex shaker. Aerosol dispersed was measured using scanning mobility particle sizer(SMPS) and optical particle counter(OPC). Mass concentration using PVC filter and cassette was measured and TEM grid sampling was conducted. Total particle concentration and size distribution were calculated. Image and chemical composition of particles in the air were observed using transmission electron microscopy and energy dispersive X-ray spectrometer. Eleven different test nanomaterials were used in the study. Results: Rank of mass concentration and particle number concentration were coincided in most cases. Rank of nanomateirals with low concentration were not coincided. Two types of fumed silica had the highest mass concentration and particle number concentration. Indium tin oxide, a mixture of indium oxide and tin oxide, had high mass concentration and particle number concentration. Indium oxide had very low mass concentration and particle number concentration. Agglomeration of nanoparticles in the air were observed in TEM analysis and size distribution. In this study, mass concentration and particle number concentration were coincided and two index can be used together. The range of dustiness in particle number concentration were too wide to measure in one method. Conclusion: Particle number concentration ranged from low concentration to high concentration depend on type of nanomaterial, and varied by preparation and amount of nanomaterial used. Further study is needed to measure dustiness of all nanomaterial as one reference method.

Optically transparent and electrically conductive indium-tin-oxide nanowires for transparent photodetectors

  • Kim, Hyunki;Park, Wanghee;Ban, Dongkyun;Kim, Hong-Sik;Patel, Malkeshkumar;Yadav, Pankaj;Kim, Joondong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.390.2-390.2
    • /
    • 2016
  • Single crystalline indium-tin-oxide (ITO) nanowires (NWs) were grown by sputtering method. A thin Ni film of 5 nm was coated before ITO sputtering. Thermal treatment forms Ni nanoparticles, which act as templates to diffuse Ni into the sputtered ITO layer to grow single crystalline ITO NWs. Highly optical transparent photoelectric devices were realized by using a transparent metal-oxide semiconductor heterojunction by combining of p-type NiO and n-type ZnO. A functional template of ITO nanowires was applied to this transparent heterojunction device to enlarge the light-reactive surface. The ITO NWs/n-ZnO/p-NiO heterojunction device provided a significant high rectification ratio of 275 with a considerably low reverse saturation current of 0.2 nA. The optical transparency was about 80% for visible wavelengths, however showed an excellent blocking UV light. The nanostructured transparent heterojunction devices were applied for UV photodetectors to show ultra fast photoresponses with a rise time of 8.3 mS and a fall time of 20 ms, respectively. We suggest this transparent and super-performing UV responser can practically applied in transparent electronics and smart window applications.

  • PDF

The Effects of Additions of In & Sb on Resistivity & Sensitivity in Tin Oxide Gas Sensors (In과 Sb의 첨가가 Tin Oxide 가스센서에서 Resistivity와 Sensitivity에 미치는 영향)

  • Son, Y.M.;Han, S.D.;Kim, J.W.;Sim, K.S.
    • Journal of Sensor Science and Technology
    • /
    • v.1 no.2
    • /
    • pp.165-172
    • /
    • 1992
  • To determine the effect of additions of trivalent and pentavalent ions on the electrical conductivity and sensing behaviour, indium and antimony were incorporated in tin oxide by the coprecipitation method. Antimony may be considered to enter the cassiterite structure as pentavalent ions, thermal energy could excite electrons from these ions into the conduction band. Similarly the indium ions would enter the lattice as $In^{3+}$ but could accept electrons from the valence band, thereby becoming monovalent or divalent. These phenomena, however, how the potential barrier existing $SnO_{2}$ by addition of two kinds of ions could influence on the sensing behaviour in comparison with their influence on the resistivity were observed.

  • PDF

Influence of in-situ remote plasma treatment on characteristics of amorphous indium gallium zinc oxide thin film-based transistors

  • Gang, Tae-Seong;Gu, Ja-Hyeon;Hong, Jin-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.257-257
    • /
    • 2011
  • The amorphous indium-gallium-zinc-oxide (a-IGZO) materials for use in high performance display research fields are strongly investigated due to its good performance, such as high mobility and better transparency. However, the stability of a-IGZO materials is increasingly becoming one of critical issues due to the sub-gap electron trap sites induced by rough interfaces during deposition processing. It is well-known that the threshold voltage shift is related to interface roughness and oxygen vacancy formed by breaking weak chemical bonds. Here, we report the better properties of transparent oxide transistors by reducing the threshold voltage shift with an external rf plasma supported magnetron sputtering system. Mainly, our sputtering method causes the surface of sample to be sleek, so that it prevents the formation of various defects, such as shallow electron trap sites in the interface. External rf power was applied from 0 to 50W during RF sputtering process to enhance the stability of our oxide transistor without having a large voltage shift. To observe the effects of external rf-plasma source on the properties of our devices, Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM) are carried out to observe surface roughness and morphology of sputtered thin film. In addition, typical electrical properties, such as I-V characteristics are analyzed.

  • PDF