• Title/Summary/Keyword: Indirect emission

Search Result 114, Processing Time 0.026 seconds

Photoluminescence Properties of $CdGaInS_{4}:Er^{3+}$ Single Crystal ($CdGaInS_{4}:Er^{3+}$ 단결정의 광발광 특성)

  • Choe, Sung-Hyu;Kim, Yo-Wan;Kang, Jong-Wook;Lee, Bong-Ju;Bang, Tae-Hwan;Hyun, Seung-Cheol;Kim, Nam-Oh;Kim, Hyung-Gon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.97-100
    • /
    • 2002
  • $CdGaInS_{4}:Er^{3+}$ single crystal crystallized in the rhombohedral. with lattice constants a = 3.899 $\AA$ and c = 36.970 $\AA$ for $CdGaInS_{4}:Er^{3+}$. The optical absorption measured near the fundamental band edge showed that the optical energy band structure of this compound had a direct and indirect band gaps. the direct and indirect energy gaps are found to be 2.665 and 2.479eV for $CdGaInS_{4}:Er^{3+}$ at 10 K. The photoluminescence spectra of $CdGaInS_{4}:Er^{3+}$ measured in the wavelength ranges of 500 nm~900 nm and 1500~1600 nm at 10 K. Eight sharp emission peaks due to $Er^{3+}$ ion are observed in the regions of 549.5~560.0nm. 661.3~676.5nm. 811.1~ 834.1 nm and 1528.2~1556.0 nm in $CdGaInS_{4}:Er^{3+}$ single crystal. These PL peaks were attributed to the radiative transitions between the split electron energy levels of the $Er^{3+}$ ions occupied at $C_{2v}$ symmetry of the $CdGaInS_4$ single crystals host lattice.

  • PDF

Analysis of Performance and Energy Saving of a SOFC-Based Hybrid Desiccant Cooling System (건물용 연료전지 기반 하이브리드 제습냉방시스템 성능 및 에너지 절감 분석)

  • IN, JUNGHYUN;LEE, YULHO;KANG, SANGGYU;PARK, SUNGJIN
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.2
    • /
    • pp.136-146
    • /
    • 2019
  • A solid oxide fuel cell (SOFC) based hybrid desiccant cooling system model is developed to study the effect of fuel utilization rate of the SOFC on the reduction of energy consumption and $CO_2$ emission. The SOFC-based hybrid desiccant cooling system consists of an SOFC system and a Hybrid desiccant cooling system (HDCS). The SOFC system includes a stack and balance of plant (BOP), and HDCS. The HDCS consists of desiccant rotor, indirect evaporative cooler, electric heat pump (EHP), and heat exchangers. In this study, using energy load data of a commercial office building and SOFC-based HDCS model, the amount of ton of oil equivalent (TOE) and ton of $CO_2$ ($tCO_2$) are calculated and compared with the TOE and $tCO_2$ generation of the EHP using grid electricity.

Innovation Space Driving Business Growth of Semiconductor Enterprises: A Case Study of South Korean Samsung's Investment in China

  • Nam, Eun-Young;Wang, Xiao-Long
    • Journal of Korea Trade
    • /
    • v.24 no.6
    • /
    • pp.37-60
    • /
    • 2020
  • Purpose - The purpose of this study is to investigate the direct and indirect impact of innovation space factors on the growth of semiconductor enterprises. Design/methodology - This empirical study uses the financial statements of 83 semiconductor listed companies in 23 provinces from 2004 to 2019 approved by CSRC (2019). A stepwise regression and backward regression are employed in order to examine the role of innovation space to expand technology investment in promoting business growth and uses South Korean Samsung's investment in China as a test case. Findings - Results indicate that innovation space, technology input, geographical area, owner's background, operating years and financing liabilities all contribute to a boost in business growth. Factors such as carbon emission, financial liberalization, government efficiency, technology input, and financing liabilities further influence management growth. Innovation space follows a nonlinear pattern, and this plays a positive role in magnifying the influence of technology on management growth. Additionally, operations of the state-owned companies and expansionary financing enterprises are influenced by the external economy. Regarding the spatial distribution, the Samsung investment in 24 companies in China shows that Samsung focuses on the acquisition of scarce resources for semiconductor production as a component of its investment and innovation strategy. Originality/value - Even though prior research has considered the concepts studied here, this study contributes to empirically evaluate the direct impact of innovation space on business growth, and the indirect impact of innovation space on business growth through technology investment. This study includes an in-depth discussion of the practical effects that innovation space has on China's economy, using a case of South Korean Samsung's investment in China as a test the empirical findings.

An Empirical Study on the Recognized Necessity by Vietnamese Users for the Motorcycle Inspection System (베트남 사용자가 인식하는 이륜차 검사제도 필요성에 관한 실증연구)

  • Lee, Yang-Ho;Ryu, Ki-Hyun;Son, Sung-Ho;Jung, Se-Hee
    • Journal of Auto-vehicle Safety Association
    • /
    • v.10 no.2
    • /
    • pp.43-49
    • /
    • 2018
  • Southeast Asia is a strategic market for both technology and inspection system to enter simultaneously. At the core market is Vietnam which is know to have the fourth highest registration of motorcycles as of 2016. The Motorcycle Inspection System is a social regulation, furthermore, the impact of the system is delivered through indirect means such as minimization of social cost. Therefore, measurements on the perception of users on the needs for an inspection system serves as valuable data to simultaneously enter this markets. This research is an empirical study on the perception of Vietnamese users on the needs to adopt a motorcycle inspection system based on data collected through surveys and is aimed at conducting a preliminary investigation on consumer behavior in Vietnam. The empirical study conducted through surveys revealed that Vietnamese motorcycle users perceive the needs for an inspection system for maintenance, safe operations and selling used vehicles at a reasonable price. In addition, the study also verified that the safe operations factor has a moderating effect due to interaction between prevention of illegal vehicle and reduction of emission gases. This research results present implications in developing equipment adapted to the local area in order to enter into a strategic market. Moreover, it is expected that the findings will also serve as valuable data for bilateral cooperation between the two countries and the diffusion of technology.

In vivo molecular and single cell imaging

  • Hong, Seongje;Rhee, Siyeon;Jung, Kyung Oh
    • BMB Reports
    • /
    • v.55 no.6
    • /
    • pp.267-274
    • /
    • 2022
  • Molecular imaging is used to improve the disease diagnosis, prognosis, monitoring of treatment in living subjects. Numerous molecular targets have been developed for various cellular and molecular processes in genetic, metabolic, proteomic, and cellular biologic level. Molecular imaging modalities such as Optical Imaging, Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT), and Computed Tomography (CT) can be used to visualize anatomic, genetic, biochemical, and physiologic changes in vivo. For in vivo cell imaging, certain cells such as cancer cells, immune cells, stem cells could be labeled by direct and indirect labeling methods to monitor cell migration, cell activity, and cell effects in cell-based therapy. In case of cancer, it could be used to investigate biological processes such as cancer metastasis and to analyze the drug treatment process. In addition, transplanted stem cells and immune cells in cell-based therapy could be visualized and tracked to confirm the fate, activity, and function of cells. In conventional molecular imaging, cells can be monitored in vivo in bulk non-invasively with optical imaging, MRI, PET, and SPECT imaging. However, single cell imaging in vivo has been a great challenge due to an extremely high sensitive detection of single cell. Recently, there has been great attention for in vivo single cell imaging due to the development of single cell study. In vivo single imaging could analyze the survival or death, movement direction, and characteristics of a single cell in live subjects. In this article, we reviewed basic principle of in vivo molecular imaging and introduced recent studies for in vivo single cell imaging based on the concept of in vivo molecular imaging.

Life Cycle Assessment of Steel Box Girder Bridge (강교량구조물의 환경적합성에 관한 전과정평가)

  • Kim, Sang-Hyo;Choi, Moon-Seock;Cho, Kwang-Il;Yoon, Ji-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4A
    • /
    • pp.269-278
    • /
    • 2011
  • Recently, methods on minimizing environmental effect caused from human-made goods have been studied in various research fields. Such issue has been also spotlighted into the civil engineering field; however, application of environmental performance assessment on civil structures is very complicated, since they handles vast ranges of materials and has comparatively long life span with various construction stages. Thus, this study intended to apply environmental performance assessment into an ordinary type of steel box girder bridge, using most popular Life cycle assessment (LCA) procedures, which are called Survey-based method and Indirect method. For better comparison of two methods, greenhouse effect of the example bridge is considered. As result of analysis, total $CO_2$ emission is evaluated as 241.27 ton with Survey-based method while it is evaluated as 221.03 ton with Indirect method. It is also revealed that most $CO_2$ is generated from the process of manufacturing and producing construction materials. Such result indicates that the efficient design which secures certain level of structural safety with minimized input materials. It is considered that the specific LCA on civil structure performed in this study could be utilized to other civil structures for reasonable environmental performance assessment.

Comparison on Spray Characteristics of Diesel HEV Injectors for 3-different Driving Type (SI, PI, DPI) (3개 구동방식(SI, PI, DPI)별 디젤HEV용 인젝터의 분무 특성 비교)

  • Chung, M.C.;Sung, G.S.;Kim, S.M.;Lee, J.W.
    • Journal of ILASS-Korea
    • /
    • v.19 no.1
    • /
    • pp.9-14
    • /
    • 2014
  • Performance of DI diesel engine with high-pressure fuel injection equipment is directly related to its emission characteristics and fuel consumption. So, the electro-hydraulic injector for the common-rail injection system should be designed to meet the precise high fuel delivery control capability. Currently, most high pressure injector in use has a needle driven by the solenoid coil energy or the piezo actuator controlled by charge-discharge of output pulse current. In this study, macroscopic spray approaching method was applied under constant volume chamber to research the performance of three different injectors : solenoid, indirect-acting piezo and direct-acting piezo type for CR direct-injection. LED back illumination for Mie scattering was applied on the liquid spray visible of direct-acting piezo injector, including hydraulic-servo type solenoid and piezo-driven injectors. As main results, we found that a direct-acting piezo injector had better a spray tip penetration than hydraulic-servo injectors in spray visualization.

Life Cycle Assessment (LCA) for Claculation of the Greenhouse Gas Emission Amount of Facility House -With Cucumber, Tomato, Paprika- (전과정평가를 통한 시설작물의 온실가스배출량 산정연구 -오이, 토마토, 파프리카를 중심으로-)

  • Kim, Tae-Hoon;Yoon, Sung-Yee
    • Korean Journal of Organic Agriculture
    • /
    • v.21 no.2
    • /
    • pp.189-205
    • /
    • 2013
  • Climate change is rapidly getting worse. In Korea, the average temperature has increased by $1.5^{\circ}C$ over the last 100 years. In terms of global warming, it causes regional climate change, extreme weather phenomena and change of cultivated area. moreover, Global Warming brings both direct and indirect damage to agricultural cultivation. Global warming was accelerated by the greenhouse gas emissions which is by industry. In addition, Greenhouse gas emissions are increasing. In agriculture Thus we need to figure out how to analyze and to reduce greenhouse gas emissions and its cause. This study assumes that it is the introduction of the bio-energy using compost to facility house and it analyzes that there is the difference between in the future in utilizing compost due to the introduction of bio-energy facility houses; Environmental effect and Environmental effect which are generally used. This research is a previous step for resource-circulating, farming, utilizing a variety of by-products of the agricultural sector as an environmental assessment studies for the future completion of resource-circulating agriculture.

Estimation of Nitrogen and Sulfur Dry Deposition over the Watershed of Lake Paldang (팔당호 유역에 대한 질소와 황의 건식 침적량 추정)

  • Kim J.Y;Ghim Y. S;Won J.-G;Yoon S.-C;Woo J.-H;Cho K.-T
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.1
    • /
    • pp.49-62
    • /
    • 2005
  • Lake Paldang is a main resource of drinking water for 20 million people in the greater Seoul area. Dry deposition amounts of nitrogen and sulfur were estimated for three typical days in each season over the watershed of Lake Paldang. Models- 3/CMAQ (Community Multiscale Air Quality) and MM5 (Mesoscale Model) were used to predict air quality and meteorology, respectively. Aerosols as well as gaseous pollutants were considered. Nitrogen was mainly deposited in the form of HNO, while most of sulfur was deposited in the form of SO$_2$. Contribution of secondary pollutants was the largest in fall since they were transported from the greater Seoul area. However, contribution of secondarily-formed particulate pollutants to the nitrogen deposition was the largest in winter because semi-volatile ammonium nitrate favors lower temperature. Annual deposition amounts of nitrogen and sulfur were 37% and 26% of their emission amounts, respectively, over the watershed of Lake Paldang. Higher value of the nitrogen deposition showed a more influence of pollutants emitted in the greater Seoul area.

Breakage Detection of Small-Diameter Tap Using Vision System in High-Speed Tapping Machine with Open Architecture Controller

  • Lee, Don-Jin;Kim, Sun-Ho;Ahn, Jung-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1055-1061
    • /
    • 2004
  • In this research, a vision system for detecting breakages of small-diameter taps, which are rarely detected by the indirect in-process monitoring methods such as acoustic emission, cutting torque and motor current, was developed. Two HMI (Human Machine Interface) programs to embed the developed vision system into a Siemens open architecture controller, 840D, were developed. They are placed in sub-windows of the main window of the 840D and can be activated or deactivated either by a softkey on the operating panel or the M code in the NC part program. In the event that any type of tool breakage is detected, the HMI program issues a command for an automatic tool change or sends an alarm signal to the NC kernel. An evaluation test in a high-speed tapping machine showed that the developed vision system was successful in detecting breakages of small-diameter taps up to M1.