• Title/Summary/Keyword: Indirect calorimetry

Search Result 50, Processing Time 0.033 seconds

Historical Development of Nutrient and Calorimetry and Expired Gas Analysis Indirect Calorimetry (영양소와 열량측정법의 발달과정 및 간접 열량 측정법)

  • Yoon, Byung-Kon;Kim, Jong-Won;Kim, Do-Yeon
    • Journal of Life Science
    • /
    • v.20 no.8
    • /
    • pp.1159-1165
    • /
    • 2010
  • Indirect calorimetry is the measurement of the amount of heat generated in an oxidation reaction by determining the intake or consumption of oxygen or by measuring the amount of carbon dioxide or nitrogen released and translating these quantities into a heat equivalent. In the last 20 years there has been significant development in both laboratory and computerized metabolic systems used in indirect calorimetry. In addition, there has been increased use of breath-by-breath EGAIC. Several researchers have suggested that breath-by-breath analysis, because of their practicality, could fulfill this need for a valid and reliable expired gas analysis indirect calorimetry instrument. It was hoped this investigation would determine the best validation for a precise measurement of breath-by-breath expired gas analysis indirect calorimetry. The problem with the available research is that few studies have examined the validity and reliability of all these different systems for breath-by-breath expired gas analysis indirect calorimetry. Therefore, there is a need to find out the most valid, reliable, and precise measurement of the breath-by-breath expired gas analysis indirect calorimetry.

Determining the appropriate resting energy expenditure requirement for severe trauma patients using indirect calorimetry in Korea: a retrospective observational study

  • Hak-Jae Lee;Sung-Bak Ahn;Jung Hyun Lee;Ji-Yeon Kim;Sungyeon Yoo;Suk-Kyung Hong
    • Journal of Trauma and Injury
    • /
    • v.36 no.4
    • /
    • pp.337-342
    • /
    • 2023
  • Purpose: This study aimed to compare the resting energy expenditure (REE) measured using indirect calorimetry with that estimated using predictive equations in severe trauma patients to determine the appropriate caloric requirements. Methods: Patients admitted to the surgical intensive care unit between January 2020 and March 2023 were included in this study. Indirect calorimetry was used to measure the patients' REE values. These values were subsequently compared with those estimated using predictive equations: the weight-based equation (rule of thumb, 25 kcal/kg/day), Harris-Benedict, Ireton-Jones, and the Penn State 2003 equations. Results: A total of 27 severe trauma patients were included in this study, and 47 indirect calorimetric measurements were conducted. The weight-based equation (mean difference [MD], -28.96±303.58 kcal) and the Penn State 2003 equation (MD, - 3.56±270.39 kcal) showed the closest results to REE measured by indirect calorimetry. However, the REE values estimated using the Harris-Benedict equation (MD, 156.64±276.54 kcal) and Ireton-Jones equation (MD, 250.87±332.54 kcal) displayed significant differences from those measured using indirect calorimetry. The concordance rate, which the predictive REE differs from the measured REE value within 10%, was up to 36.2%. Conclusions: The REE values estimated using predictive equations exhibited substantial differences from those measured via indirect calorimetry. Therefore, it is necessary to measure the REE value through indirect calorimetry in severe trauma patients.

Obesity from the viewpoint of metabolic rate (대사량의 측면에서 본 비만)

  • Shin, Sang-Won;Kim, Ho-Jun;Kim, Su-Jin
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.3 no.1
    • /
    • pp.95-105
    • /
    • 2003
  • The obesity is the matter of the energy balance in essential. The energy balance in human body is energy expenditure subtracted from energy intake. The energy intake is mainly supplied by carbohydrates, proteins and lipids in food, and the energy expenditure is composed of basal metabolic rate or resting energy expenditure, physical activity and thermogenesis including diet-induced thermogenesis. The resting energy expenditure is measured by direct calorimetry and indirect calorimetry. Generally we can simply use predictive equation with the variables of weight, height, age and fat-free mass to yield metabolic rate. But there is discrepancy between the estimate and real metabolic rate because the equations can not reflect individuality and environments. The resting energy expenditure is influenced by many factors but the fundamental factor is fat-free mass. We briefly reviewed the concept and evaluation of the energy balance, intake and expenditure, which are important parts in the study of obesity. Finally, we surveyed the correlation between metabolic rate and obesity and suggested applicable herb medication to increase metabolic rate.

  • PDF

Validity of predictive equations for resting energy expenditure in Korean non-obese adults

  • Ndahimana, Didace;Choi, Yeon-Jung;Park, Jung-Hye;Ju, Mun-Jeong;Kim, Eun-Kyung
    • Nutrition Research and Practice
    • /
    • v.12 no.4
    • /
    • pp.283-290
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: Indirect calorimetry is the gold-standard method for the measurement of resting energy expenditure. However, this method is time consuming, expensive, and requires highly trained personnel. To overcome these limitations, various predictive equations have been developed. The objective of this study was to assess the validity of predictive equations for resting energy expenditure (REE) in Korean non-obese adults. SUBJECTS/METHODS: The present study involved 109 participants (54 men and 55 women) aged between 20 and 64 years. The REE was measured by indirect calorimetry. Nineteen REE equations were evaluated for validity, by comparing predicted and measured REE results. Predictive equation accuracy was assessed by determining percent bias, root mean squared prediction error (RMSE), and percentage of accurate predictions. RESULTS: The measured REE was significantly higher in men than in women (P < 0.001), but the difference was not significant after adjusting for body weight (P > 0.05). The equation developed in this study had an accuracy rate of 71%, a bias of 0%, and an RMSE of 155 kcal/day. Among published equations, the $FAO_{weight}$ equation gave the highest accuracy rate (70%), along with a bias of -4.4% and an RMSE of 184 kcal/day. CONCLUSIONS: The newly developed equation provided the best accuracy in predicting REE for Korean non-obese adults. Among the previously published equations, the $FAO_{weight}$ equation showed the highest overall accuracy. Regardless, at an individual level, the equations could lead to inaccuracies in a considerable number of subjects.

A Comparison of the Resting Energy Expenditure of Korean Adults Using Indirect Calorimetry (Indirect Calorimetry를 이용한 한국 성인의 휴식대사량 비교 연구)

  • 박정아;김기진;김정희;박영숙;구재옥;윤진숙
    • Korean Journal of Community Nutrition
    • /
    • v.8 no.6
    • /
    • pp.993-1000
    • /
    • 2003
  • The purpose of this study was to provide baseline data for revising the recommended energy intake for Korean adults. We recruited 290 adults so as to determine their resting energy expenditure (REE) and energy intake. The REE was measured by indirect calorimetry. We also calculated the REE from prediction equations formulated by World Health Organization (WHO), The energy intake for two consecutive days was assessed using the 24 hour recall method. The body weight, lean body mass (LBM) and percentage body fat were measured using the INBODY 3.0 system. We compared the results of three age groups ; 20 to 29 years,30 to 49 years and 50 years or more. The average energy intake of each age group was below the 7th Korean Recommended Dietary Allowances (RDA). The average energy intake was lower in the older age groups. However, no difference was observed among the age groups when the energy intake as a percentage of the Korean RDA was compared. Our measurement of the REE was higher than the REE calculated by the WHO's method. Correlation coefficients between the measured and the calculated values of REE for all age groups showed significant correlations (r=0.475-0.672). As the ages of all the subjects increased, the REE/kg of body weight decreased. There were no significant differences in the REE / kg of the LBM between the different age groups; however, the REE/kg of the LBM was higher in the female group than in the male group. Negative correlations of the REE with the age (r=-0.242) and body fat ratio (r=-0.313) were observed; positive correlations of the REE with the BMI (r=0.265), height (r=0.570), weight (r=0.562) and LBM (r=0.586) were also found (p<0.01).

Comparison of Resting Energy Expenditure Using Indirect Calorimetry and Predictive Equations in Trauma Patients: A Pilot Study

  • Ma, Dae Sung;Lee, Gil Jae
    • Journal of Trauma and Injury
    • /
    • v.34 no.1
    • /
    • pp.13-20
    • /
    • 2021
  • Purpose: Nutritional therapy in the intensive care unit is an essential factor for patient progress. The purpose of this study was to compare resting energy expenditure (REE) calculated by prediction equations (PEs) to the REE measured by indirect calorimetry (IC) in trauma patients. Methods: Patients admitted to the trauma intensive care unit who received mechanical ventilation between January and December 2015 were enrolled. REE was measured by IC (CCM Express, MGC Diagnostics) and calculated by the following PEs: Harris-Benedict, Fleisch, Robertson and Reid, Ireton-Jones, and the maximum value (25 kcal/kg/day) of the European Society for Clinical Nutrition and Metabolism (ESPEN). All patients were ventilated at a fraction of inspired oxygen (FiO2) below 60%. Results: Of the 31 patients included in this study, 24 (77.4%) were men and seven (22.6%) were women. The mean age of the patients was 49.7±13.2 years, their mean weight was 68.1±9.6 kg, and their mean Injury Severity Score was 26.1±11.3. The mean respiratory quotient on IC was 0.93±0.19, and their mean FiO2 was 38.72%±6.97%. The mean REE measured by IC was 2,146±444.36 kcal/day, and the mean REE values calculated by the PEs were 1,509.39±205.34 kcal/day by the Harris and Benedict equation, 1,509.39±154.33 kcal/day by the Fleisch equation, and 1,443.39±159.61 kcal/day by the Robertson and Reid equation. The Ireton-Jones equation yielded a higher value (2,278.90±202.35 kcal/day), which was not significantly different from the value measured using IC (p=0.53). The ESPEN maximum value (1,704.03±449.36 kcal/day) was lower, but this difference was likewise not significant (p=0.127). Conclusions: The REE measured by IC was somewhat higher than that calculated using PEs. Further studies are needed to determine the proper nutritional support for trauma patients.

Net energy content of rice bran, corn germ meal, corn gluten feed, peanut meal, and sunflower meal in growing pigs

  • Li, Yakui;Li, Zhongchao;Liu, Hu;Noblet, Jean;Liu, Ling;Li, Defa;Wang, Fenglai;Lai, Changhua
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.9
    • /
    • pp.1481-1490
    • /
    • 2018
  • Objective: The objective of this experiment was to determine the net energy (NE) content of full-fat rice bran (FFRB), corn germ meal (CGM), corn gluten feed (CGF), solvent-extracted peanut meal (PNM), and dehulled sunflower meal (SFM) fed to growing pigs using indirect calorimetry or published prediction equations. Methods: Twelve growing barrows with an average initial body weight (BW) of $32.4{\pm}3.3kg$ were allotted to a replicated $3{\times}6$ Youden square design with 3 successive periods and 6 diets. During each period, pigs were individually housed in metabolism crates for 16 d, which included 7 days for adaptation. On d 8, the pigs were transferred to the respiration chambers and fed one of the 6 diets at 2.0 MJ metabolizable energy (ME)/$kg\;BW^{0.6}/d$. Total feces and urine were collected and daily heat production was measured from d 9 to d 13. On d 14 and d15, pigs were fed at their maintenance energy requirement level. On the last day pigs were fasted and fasting heat production was measured. Results: The NE of FFRB, CGM, CGF, PNM, and SFM measured by indirect calorimetry method was 12.33, 8.75, 7.51, 10.79, and 6.49 MJ/kg dry matter (DM), respectively. The NE/ME ratios ranged from 67.2% (SFM) to 78.5% (CGF). The NE values for the 5 ingredients calculated according to the prediction equations were 12.22, 8.55, 6.79, 10.51, and 6.17 MJ/kg DM, respectively. Conclusion: The NE values were the highest for FFRB and PNM and the lowest in the corn co-products and SFM. The average NE of the 5 ingredients measured by indirect calorimetry method in the current study was greater than values predicted from NE prediction equations (0.32 MJ/kg DM).

Heat Production Determined by the Respiration-Calorimetric Method and Body Balance Method

  • Han, In-K.
    • Journal of Nutrition and Health
    • /
    • v.1 no.1
    • /
    • pp.33-36
    • /
    • 1968
  • Amounts of heat production determined by two indirect calorimetric methods, i.e., respiration-calorimetric method and body balance method were compared. In this report the apparatus, its operation and computation procedures for Haldane respiration-calorimetry modified by Han as well as procedures for body balance method are described. It was found that the heat production measured by two methods are similar.

  • PDF

The Net Energy Values of Corn, Dried Distillers Grains with Solubles and Wheat Bran for Laying Hens Using Indirect Calorimetry Method

  • Ning, D.;Yuan, J.M.;Wang, Y.W.;Peng, Y.Z.;Guo, Y.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.2
    • /
    • pp.209-216
    • /
    • 2014
  • The present study was conducted to estimate the NE values of corn, dried distillers grains with solubles (DDGS) and wheat bran (WB) for laying hens based on an indirect calorimetry method and nitrogen balance measurements. A total of 576 twenty-eight-wk-old Dwarf Pink-shell laying hens were randomly assigned to four groups fed a basal diet (BD) or a combination of BD with 50% corn or 20% DDGS or 20% WB, with four replicates each. After a 7-d adaptation period, each replicate with 36 hens were kept in one of the two respiration chambers to measure the heat production (HP) for 6 days during the feeding period and subsequent 3-d fasting. The equilibrium fasting HP (FHP) provided an estimate of NE requirements for maintenance (NEm). The NE values of test feedstuffs was estimated using the difference method. Results showed that the heat increment that contributed 35.34 to 37.85% of ME intake was not influenced by experimental diets (p>0.05) when expressed as Mcal/kg of DM feed intake. Lighting increased the HP in hens in an fed-state. The FHP decreased over time (p<0.05) with the lowest value determined on the third day of starvation. No significant difference between treatments was found on FHP of d 3 (p>0.05). The estimated AME, AMEn, and NE values were 3.46, 3.44 and 2.25 Mcal/kg DM for corn, 3.11, 2.79, and 1.80 Mcal/kg DM for DDGS, 2.14, 2.10, and 1.14 Mcal/kg DM for WB, respectively. The net availability of AME of corn tended to be numerically higher than DDGS and WB (p = 0.096). In conclusion, compared with corn, the energy values of DDGS and WB were overestimated when expressed on an AME basis.