• Title/Summary/Keyword: Indicator isotope

Search Result 21, Processing Time 0.024 seconds

Application of Sediment Physical Properties to Paleoclimatic Interpretation: Preliminary Results in the Ulleung Basin, the East Sea

  • Kim, Gil-Young;Kim, Dae-Choul;Keene, Jock;Kim, Jeong-Chang
    • Journal of the korean society of oceanography
    • /
    • v.34 no.4
    • /
    • pp.207-213
    • /
    • 1999
  • Sediment physical properties (compressional wave velocity, grain density, dry bulk density, and wet bulk density) are correlated to the paleoenvironmental parameters (coarse fraction, oxygen isotope, and planktonic foraminifera fragmentation) to reveal the possible interrelationship in the latest Quaternary sediments of the Ulleung Basin, the East Sea of Korea. Laboratory determinations of physical properties and paleoenvironmental parameters have been conducted on four piston core sediments. There are slight differences in the physical properties between glacial and interglacial period sediment sections. This is due to the large fraction of coarse grains of volcanic and terrigenous sediments relative to carbonate sediments. However, dry bulk density as an indicator of carbonate abundance in pelagic environment shows higher values at the lower part of cores, reflecting deeper CCD in the glacial period. Changes in velocity also relatively parallel to those in sediment coarse fraction, number of planktonic foraminifera, and wet bulk density. Therefore, we suggest that high-resolution physical properties may be used as a valuable tool for paleoenvironmental interpretation in the Ulleung Basin.

  • PDF

Calibration of δ13C values of CO2 gas with different concentrations in the analysis with Laser Absorption Spectrometry (레이저흡광분석기(Laser Absorption Spectrometry)를 이용한 CO2가스의 탄소안정동위원소비 보정식 산출)

  • Jeong, Taeyang;Woo, Nam C.;Shin, Woo-Jin;Bong, Yeon-Sik;Choi, Seunghyun;Kim, Youn-Tae
    • Economic and Environmental Geology
    • /
    • v.50 no.6
    • /
    • pp.537-544
    • /
    • 2017
  • Stable carbon isotope ratio of carbon dioxide (${\delta}^{13}C_{CO2}$) is used as an important indicator in the researches for global climate change and carbon capture and sequestration technology. The ${\delta}^{13}C$ value has been usually analyzed with Isotope Ratio Mass Spectrometer (IRMS). Recently, the use of Laser Absorption Spectrometry (LAS) is increasing because of the cost efficiency and field applicability. The purpose of this study was to suggest practical procedures to prepare laboratory reference gases for ${\delta}^{13}C_{CO2}$ analysis using LAS. $CO_2$ gas was adjusted to have the concentrations within the analytical range. Then, the concentration of $CO_2$ was assessed in a lab approved by the Korea Laboratory Accreditation Scheme and the ${\delta}^{13}C_{CO2}$ value was measured by IRMS. When the instrument ran over 12 hours, the ${\delta}^{13}C$ values were drifted up to ${\pm}10$‰ if the concentration of $CO_2$ was shifted up to 1.0% of relative standard deviation. Therefore, periodical investigation of analytical suitability and correction should be conducted. Because ${\delta}^{13}C_{CO2}$ showed the dependency on $CO_2$ concentration, we suggested the equation for calibrating the concentration effect. After calibration, ${\delta}^{13}C_{CO2}$ was well matched with the result of IRMS within ${\pm}0.52$‰.

Application of Stable Isotopic Niche Space to Large River Monitoring: Analysis of Benthic Macroinvertebrates of the Seongchon Wier (안정동위원소비를 활용한 생태지위면적 분석의 수생태계 평가 가능성 분석: 영산강 승촌보의 저서성 대형무척추동물을 대상으로)

  • Seo, Dong-Hwan;Oh, Hye-Ji;Jin, Mei-Yan;Oda, Yusuke;Kim, Hyun-Woo;Jang, Min-Ho;Choi, Bohyung;Shin, Kyung-Hoon;Lee, Kyung-Lak;Lee, Su-Woong;Chang, Kwang-Hyeon
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.6
    • /
    • pp.685-694
    • /
    • 2018
  • We measured ecological niche space (ENS) using carbon and nitrogen stable isotope ratios of benthic macroinvertebrates to estimate its applicability for large river assessment. In particular, we compared ENSs of selected macroinvertebrates between upper and lower area of Seungchon Weir in Yeongsan River to estimate the impact of weir on biological community. We also measured basic water quality and community indices including benthic macroinvertebrates index (BMI) to estimate their correlations with calculated ENS. ENS was calculated using the Bayesian Stable Isotope in R statistics (package "SIBER"). The results showed that seasonal variations in water quality and community indices were found, but there was no apparent tendency between upper and lower area of the Seungchon Weir in June (before rainy season) and August (after rainy season). However, ENS of benthic macroinvertebrates markedly decreased across the weir in both June and August regardless of changes in water quality. This means the physical change of the stream due to the weir cause decrease of ecological isotopic niche space of benthic macroinvertebrates regardless of water quality, suggesting physical modification by the weir can affect the interaction between habitat condition and macroinvertebrates. Therefore, the ecological isotopic niche space can be a useful supplementary indicator for the river ecosystem assessment.

Organic Matter Cycle by Biogeochemical Indicator in Tidal Mud Flat, West Coast of Korea (생지화학적 지표를 이용한 서해안 갯벌 퇴적층에서의 유기물 순환에 관한 연구)

  • Lee, Dong-Hun;Lee, Jun-Ho;Jeong, Kap-Sik;Woo, Han Jun;Kang, Jeongwon;Shin, Kyung-Hoon;Ha, Sun-Yong
    • Ocean and Polar Research
    • /
    • v.36 no.1
    • /
    • pp.25-37
    • /
    • 2014
  • To understand the degradation processes of organic matter related to sulfate reduction by Sulfate Reduction Bacteria (SRB) in the tidal flat sediments of Hwang-do and Sogeun-ri, Tae-an Peninsula in Chungnam-do, biogeochemical characteristics were analyzed and highlighted using specific microbial biomarkers. The organic geochemical parameters (TOC, ${\delta}^{13}C_{org}$, C/N ratio, long-chain-n-alkane) indicate that most of the organic matter has been derived from marine phytoplankton and bacteria in the fine-grained sediment of Sogeun-ri, although terrestrial plant components have occasionally been incorporated to a significant degree in the coarse-grained sediment of Hwang-do. The concentration of sulfate in pore water is a constant tendency with regard to depth profile, while methane concentration appears to be slightly different with regard to depth profile at the two sites. Especially, the sum of bacteria fatty acid (a-C15:0 + i-C15:0 + C16:1w5) confirms that the these concentrations in Sogeun-ri are related to the degradation of Benzene, Toluene, Ethylbenzene and Xylene (BTEX) compounds from the crude oil retained in the sediments as a result of the Hebei Spirit oil-spill accident in 2007. The methane-related microbial communities as shown by lipid biomarkers (crocetane, PMI) are larger in some sedimentary sections of Hwang-do than in the Sogeunri tidal flat. These findings suggest that methane production by microbiological processes is clearly governed by SRB activity along the vertical succession in organic-enriched tidal flats.

Comparison of Solidification Pre-treatment Methods for the Determination of δ13C of Dissolved Organic Carbon: Alkaline Persulfate Oxidation-Carbonate Precipitation vs. Freeze Drying (용존유기탄소의 δ13C : 분석시 고형화 전처리 방법 비교 알칼린 과황산칼륨산화 탄산침전과 동결건조)

  • Jeon, Byeong-Jun;Park, Hyun-Jin;Choi, Woo-Jung;Park, Yong-Se;Lee, Sang-Mo;Yoon, Kwang-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.2
    • /
    • pp.113-118
    • /
    • 2017
  • BACKGROUND: The carbon (C) isotope ratio (${\delta}^{13}C$) of dissolved organic C (DOC) is an indicator of water pollution source. In this study, the potential use of two pre-treatments for the ${\delta}^{13}C$ analysis, alkaline persulfate oxidation coupled with carbonate precipitation (precipitation) and freeze drying (drying), were compared to suggest a more feasible pre-treatment method. METHODS AND RESULTS: Two reference materials with different ${\delta}^{13}C$ values were used for the experiments; chemical grade glucose ($-12.0{\pm}0.02$‰) and pig manure compost extract ($-23.3{\pm}0.04$‰). In the precipitation method, the measured ${\delta}^{13}C$ values were consistently lower than the theoretically calculated values as dissolved $CO_2$ could not be removed due to the alkaline property of the reagents and the dissolution of air $CO_2$ into the alkaline solution. The drying method also resulted in more negative ${\delta}^{13}C$ than the calculated ${\delta}^{13}C$; however, the difference was systematic ($3.9{\pm}0.3$‰) and there was a strong correlation (${\delta}^{13}C_{calculated}=0.87{\times}{\delta}^{13}C_{measured}-0.624$, $r^2=0.98$) between the calculated and measured ${\delta}^{13}C$. Calibration of ${\delta}^{13}C$ using the relationship between the calculated and the measured ${\delta}^{13}C$ values produced reliable and accurate ${\delta}^{13}C$ values. CONCLUSION: Our results suggest that the drying method is more accurate pre-treatment method to minimize the influence of air $CO_2$ compared to the precipitation method for the determination of ${\delta}^{13}C$ of DOC.

Characterization of contribution of vehicle emissions to ambient NO2 using stable isotopes (안정동위원소를 이용한 이동오염원에 의한 대기 중 NO2의 거동특성 연구)

  • Park, Kwang-Su;Kim, Hyuk;Yu, Suk-Min;Noh, Seam;Park, Yu-Mi;Seok, Kwang-Seol;Kim, Min-Seob;Yoon, Suk Hee;Kim, Young-Hee
    • Analytical Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.17-23
    • /
    • 2019
  • Sources of NOx are both anthropogenic (e.g. fossil fuel combustion, vehicles, and other industrial processes) and natural (e.g. lightning, biogenic soil processes, and wildfires). The nitrogen stable isotope ratio of NOx has been proposed as an indicator for NOx source partitioning, which would help identify the contributions of various NOx sources. In this study, the ${\delta}^{15}N-NO_2$ values of vehicle emissions were measured in an urban region, to understand the sources and processes that influence the isotopic composition of NOx emissions. The Ogawa passive air sampler was used to determine the isotopic composition of $NO_2$(g). In urban tunnels, the observed $NO_2$ concentration and ${\delta}^{15}N-NO_2$ values averaged $3809{\pm}2656ppbv$ and $7.7{\pm}1.8$‰, respectively. The observed ${\delta}^{15}N-NO_2$ values are associated with slight regional variations in the vehicular $NO_2$ source. Both $NO_2$ concentration and ${\delta}^{15}N-NO_2$ values were significantly higher near the expressway ($965{\pm}125ppbv$ and $5.9{\pm}1.4$‰) than at 1.1 km from the expressway ($372{\pm}96ppbv$ and $-11.5{\pm}2.9$‰), indicating a high proportion of vehicle emissions. Ambient ${\delta}^{15}N-NO_2$ values were used in a binary mixing model to estimate the percentage of the ${\delta}^{15}N-NO_2$ value contributed by vehicular NOx emissions. The calculated percentage of the ${\delta}^{15}N-NO_2$ contribution by vehicles was significantly higher close to the highway, as observed for the $NO_2$ concentration and ${\delta}^{15}N-NO_2$.

Analysis of Waterborne Automotive Refinish Paint for Investigating Insurance Fraud (차량 보수도장 보험사기 규명을 위한 수용성 페인트 성분분석)

  • Lee, Joon-Bae;Lee, Cheon-Ho;Ryu, Seung-Jin;Gong, Bokyoung;Kwon, O-Seong;Kim, Myung-Duck;Kim, Nam Yee;Paeng, Ki Jung
    • Applied Chemistry for Engineering
    • /
    • v.28 no.4
    • /
    • pp.490-494
    • /
    • 2017
  • With increasing the number of vehicles, the accident rate also goes up and the damaged vehicles should be painted as a final repair process. At the painting stage the solvent-based paint causes environmental problems. To overcome these problems waterborne refinish paint is frequently used recently. However, for waterborne refinish, the costs of insurance coverage are too expensive, and insurance reimbursement costs could be burdensome. Because of the high price of aquatic paint treatment, the service shop might charge the malicious service price. In this study, the surfactant of Surfynol 104, which is the component in the paint, was used as an indicator whether the vehicle was painted with waterborne paint. The specimen was quantitatively analyzed to contain 0.38% of the surfactant through the standard addition method with isotope substituted internal standard (IS) of fluranthene-d10 by curie point pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS).

A Study of Bone Uptake According to Renal Function in the Whole Body Bone Scan (전신 뼈 검사에서 신장 기능에 따른 뼈 섭취율에 대한 고찰)

  • Cho, Yong-In;Jang, Dong-Gun;Park, Cheol-Woo
    • Journal of radiological science and technology
    • /
    • v.36 no.4
    • /
    • pp.299-304
    • /
    • 2013
  • Whole body bone scan has been used to confirm bone metastasis and follow-up study with radio isotope. However, if the factors related to $^{99m}Tc$ uptake and waiting time for study are inappropriate, it would be image of low quality. The purpose of present study was to investigate correlation between the evaluation index of renal function and uptake of radiopharmaceuticals. The population for this retrospective study consisted of 387 patients who underwent whole body bone scan between June 2012 and December 2012. As a result of quantitative and qualitative analysis, we were able to confirm that GFR of less than normal range and creatinine levels in blood of more than average are more likely to be under the mean uptake rate. As a result of analysis on the indicator affecting soft-tissue and bone uptake, the correlation of all elements was somewhat low. Also there are no statistically significances due to the other parameters we did not deal with. Therefore, further research on additional factors is needed for exact study and improvement of the image quality.

Marine Terrace of Daebo-Guryongpo-Gampo, SE Korea(II) (대보-구룡포-감포 지역의 해안단구(II))

  • 최성자
    • Economic and Environmental Geology
    • /
    • v.37 no.2
    • /
    • pp.245-253
    • /
    • 2004
  • The 36km-long Daebo-Campo coast has a well-developed marine terraces divided to six steps by elevation of paleoshoreline : 0.5 m(T1), 10 m(T2), 30 m(T3), 40 m(T4), 60 m(T5) and 75 m(T6). The 2$^{nd}$ and 3$^{nd}$ platforms in Daebo to Guryongpo are wider and more distinctive than those of Guryongpo to Gampo. The 3$^{nd}$ terrace of 30 m high is subdivided to two flights as lower(T3b) and upper(T3a) by old sea cliff. Platform age is unclear because of coral fossil free. However, the terrace age could be determined with convergent OSL ages from beach sediments on 2$^{nd}$ step(T2). OSL ages of the terrace of 10 m high range in 60-70 ka. It reveals that the 2$^{nd}$ -step platform correlates to Oxygen Isotope Time scale, substage 5a(ca. 80 ka), and that uplift rate is ca. 0.19 m/ka for 2$^{nd}$ terrace at Daebo-Campo coast. If considering equivalent uplift rate for all terraces since the Late Pleistocene, the 3$^{rd}$ and 4$^{th}$ terraces would be 5e substage and 7 stage. The 30 m-high terrace provides a good indicator for uplift at Daebo-Gampo coast since 125,000 yrs(MIS 5e). It suggests that the local neotectonic deformation might cause an optional uplift rate of ca. 0.19 m/ka along the SE coast of Korea.

Isotope Ratio of Mineral N in Pinus Densiflora Forest Soils in Rural and Industrial Areas: Potential Indicator of Atmospheric N Deposition and Soil N Loss (질소공급, 고추의 생육 및 수량에 대한 녹비작물 환원 효과)

  • Kwak, Jin-Hyeob;Lim, Sang-Sun;Park, Hyun-Jung;Lee, Sun-Il;Lee, Dong-Suk;Lee, Kye-Han;Han, Gwang-Hyun;Ro, Hee-Myong;Lee, Sang-Mo;Choi, Woo-Jung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.1
    • /
    • pp.46-52
    • /
    • 2009
  • Deposition of atmospheric N that is depleted in $^{15}N$ has shown to decrease N isotope ratio ($^{15}N/^{14}N$,expressed as ${\delta}^{15}N$) of forest samples such as tree rings, foliage, and total soil-N. However, its effect on ${\delta}^{15}N$ of mineral soil-N which is biologically active N pool has never been tested. In this study, ${\delta}^{15}N$ of mineral N($NH{_4}^+$ and $NO_3{^-}$) in forest soils from organic and two depths of mineral soil layers (0 to 20 cm and 20 to 40cm depth) of Pinus densiflora stands located at two distinct areas (rural and industrial areas) in southern Korea was analyzed to investigate if there is any difference in ${\delta}^{15}N$ of mineral N between these areas. We also evaluated potential N loss of the study sites using ${\delta}^{15}N$ of mineral N. Across the soil layers, the ${\delta}^{15}N$ of $NH{_4}^+$ ranged from +8.9 to +24.8‰ in the rural area and from +4.4 to +13.8‰ in the industrial area. Soils from organic layer (+4.4‰) and mineral layer between 0 and 20 cm (+13.8‰) of industrial area showed significantly lower ${\delta}^{15}N$ of $NH{_4}^+$ than those of rural area (+8.9 and +24.3‰, respectively), probably indicating the greater contribution of $^{15}N$-depleted $NH{_4}^+$ from atmospheric deposition to forest in the industrial area than in the rural area. Meanwhile, ${\delta}^{15}N$ of $NO_3{^-}$ was not different between the rural and industrial areas, probably because ${\delta}^{15}N$ of $NO_3{^-}$ is more likely to be altered by the N loss that causes $^{15}N$ enrichment of the remaining soil N pool. Compared with the ${\delta}^{15}N$ of soil mineral N reported by other studies (from -10.9 to +15.6‰ for $NH{_4}^+$ and -14.8 to +5.6‰ for $NO_3{^-}$), the ${\delta}^{15}N$ observed in our study was substantially high, suggesting that the study sites are more subject to the N loss. It was concluded that $NH{_4}^+$ rather than $NO_3{^-}$ can conserve the ${\delta}^{15}N$ signature of atmospheric N deposition in forest ecosystems.