• Title/Summary/Keyword: Indian ocean

Search Result 183, Processing Time 0.023 seconds

Other faunas, coral rubbles, and soft coral covers are important predictors of coral reef fish diversity, abundance, and biomass

  • Imam Bachtiar;Tri Aryono Hadi;Karnan Karnan;Naila Taslimah Bachtiar
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.4
    • /
    • pp.268-281
    • /
    • 2023
  • Coral reef fisheries are prominent for the archipelagic countries' food sufficiency and security. Studies showed that fish abundance and biomass are affected by biophysical variables. The present study determines which biophysical variables are important predictors of fish diversity, abundance, and biomass. The study used available monitoring data from the Indonesian Research Center for Oceanography, the National Board for Research and Innovation. Data were collected from 245 transects in 19 locations distributed across the Indonesian Archipelago, including the eastern Indian Ocean, Sunda Shelf (Karimata Sea), Wallacea (Flores and Banda Seas), and the western Pacific Ocean. Principal component analysis and multiple regression model were administered to 13 biophysical metrics against 11 variables of coral reef fishes, i.e., diversity, abundance, and biomass of coral reef fishes at three trophic levels. The results showed for the first time that the covers of other fauna, coral rubbles, and soft corals were the three most important predictor variables for nearly all coral reef fish variables. Other fauna cover was the important predictor for all 11 coral reef fish variables. Coral rubble cover was the predictor for ten variables, but carnivore fish abundance. Soft coral cover was a good predictor for corallivore, carnivore, and targeted fishes. Despite important predictors for corallivore and carnivore fish variables, hard coral cover was not the critical predictor for herbivore fish variables. The other important predictor variables with a consistent pattern were dead coral covered with algae and rocks. Dead coral covered with algae was an important predictor for herbivore fishes, while the rock was good for only carnivore fishes.

Simulation of TOA Visible Radiance for the Ocean Target and its Possible use for Satellite Sensor Calibration (해양 표적을 이용한 대기 상단 가시영역에서의 복사휘도 모의와 위성 센서 검보정에의 활용 가능성 연구)

  • Kim, Jung-Gun;Sohn, Byung-Ju;Chung, Eui-Seok;Chun, Hyoung-Wook;Suh, Ae-Sook;Kim, Kum-Lan;Oh, Mi-Lim
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.6
    • /
    • pp.535-549
    • /
    • 2008
  • Vicarious calibration for the satellite sensor relies on simulated TOA (Top-of-Atmosphere) radiances over various targets. In this study, TOA visible radiance was calculated over ocean targets which are located in five different regions over the Indian and Pacific ocean, and its possible use for the satellite sensor calibration was examined. TOA radiances are simulated with the 6S radiative transfer model for the comparison with MODIS/Terra and SeaWiFS measurements. Geometric angles and sensor characteristics of the reference satellites were taken into account for the simulation. AOT (Aerosol Optical Thickness) from MODIS/Terra, pigment concentrations from Sea WiFS, and ozone amount from OMI measurements were used as inputs to the model. Other atmospheric input parameters such as surface wind and total column water vapor were taken from NCEP/NCAR reanalysis data. The 5-day averaged radiances over all targets show that the percent differences between simulated and observed radiances are within about ${\pm}5%$ in year 2005, indicating that the calculated radiances are in good agreement with satellite measurements. It has also been shown that the algorithm can produce the SeaWiFS radiances within about ${\pm}5%$ uncertainty range. It has been suggested that the algorithm can be used as a tool for calibrating the VIS bands within about 5% uncertainty range.

In-situ Calibration of Membrane Type Dissolved Oxygen Sensor for CTD (CTD용 박막형 용존산소 센서의 현장 교정)

  • DONG-JIN KANG;YESEUL KIM
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.28 no.1
    • /
    • pp.41-50
    • /
    • 2023
  • Dissolved oxygen sensors have characteristics in which data drift occurs over time. Therefore, in-situ calibration of the dissolved oxygen sensor is essential to accurately measure the concentration of dissolved oxygen in seawater. In order to provide a method for in-situ calibration, appropriate number of samples for calibration, and laboratory calibration interval of the dissolved oxygen sensor, the dissolved oxygen sensor values were compared with the measured values by titration on a total of 133 samples from three different cruises in the Indian Ocean, Pacific Ocean, and East Sea over a period of about one year. As a result, it is preferable to calibrate the sensor value using the correlation of a straight line obtained by directly comparing the final concentration value given by the sensor and the measured value. For the accurate calibration, at least 30 samples must be used to enable in-situ calibration within an accuracy range of about 1%. In addition, it is recommended that a laboratory calibration should perform within 1 year for the membrane type dissolved oxygen sensor for CTD to achieve a performance of 70% or more.

Strong wind climatic zones in South Africa

  • Kruger, A.C.;Goliger, A.M.;Retief, J.V.;Sekele, S.
    • Wind and Structures
    • /
    • v.13 no.1
    • /
    • pp.37-55
    • /
    • 2010
  • In this paper South Africa is divided into strong wind climate zones, which indicate the main sources of annual maximum wind gusts. By the analysis of wind gust data of 94 weather stations, which had continuous climate time series of 10 years or longer, six sources, or strong-wind producing mechanisms, could be identified and zoned accordingly. The two primary causes of strong wind gusts are thunderstorm activity and extratropical low pressure systems, which are associated with the passage of cold fronts over the southern African subcontinent. Over the eastern and central interior of South Africa annual maximum wind gusts are usually caused by thunderstorm gust fronts during summer, while in the western and southern interior extratropical cyclones play the most dominant role. Along the coast and adjacent interior annual extreme gusts are usually caused by extratropical cyclones. Four secondary sources of strong winds are the ridging of the quasi-stationary Atlantic and Indian Ocean high pressure systems over the subcontinent, surface troughs to the west in the interior with strong ridging from the east, convergence from the interior towards isolated low pressure systems or deep coastal low pressure systems, and deep surface troughs on the West Coast.

Development of Earthquake Damage Estimation System and its Result Transmission by Engineering Test Satellite for Supporting Emergency

  • Jeong, Byeong-Pyo;Hosokawa, Masafumi;Takizawa, Osamu
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.12-19
    • /
    • 2011
  • Drawing on its extensive experience with natural disasters, Japan has been dispatching Japan Disaster Relief (JDR) team to disaster-stricken countries to provide specialist assistance in rescue and medical operations. The JDR team has assisted in the wake of disasters including the 2004 Indian Ocean Earthquake and the 2008 Sichuan Earthquake in China. Information about the affected area is essential for a rapid disaster response. However, it can be difficult to gather information on damages in the immediate post-disaster period. To help overcome this problem, we have built on an Earthquake Damage Estimation System. This system makes it possible to produce distributions of the earthquake's seismic intensity and structural damage based on pre-calculated data such as landform and site amplification factors for Peak Ground Velocity, which are estimated from a Digital Elevation Model, as well as population distribution. The estimation result can be shared with the JDR team and with other international organizations through communications satellite or the Internet, enabling more effective rapid relief operations.

  • PDF

Traditional medicines for common dermatological disorders in Mauritius

  • Mahomoodally, Mohamad Fawzi;Hossain, Ziad Dil
    • CELLMED
    • /
    • v.3 no.4
    • /
    • pp.31.1-31.8
    • /
    • 2013
  • This study has been geared to document primary information on common complementary and alternative medicines (CAM) used to treat and/or manage common dermatological disorders in Mauritius, a tropical multicultural island in the Indian Ocean. Data from 355 key informants was collected via a semi-structured questionnaire. Pearson correlation and Chi-squared test were performed to delineate any association. Quantitative indexes including the Importance Value (IV) and fidelity value were calculated. Results tend to indicate that cultural reasons were behind the use of CAM among Mauritians and traditional knowledge was mainly acquired either from parents/relatives or from self-experience. Among the medicinal plants mentioned, Aziadiracta indica (IV = 0.78) and Paederia tomentosa (IV = 0.70) were found to be most used plants. Calendula officinalis (IV = 0.15), Centella asiatica (IV = 0.22) and Agauria salicifolia (IV = 0.11) were also recorded to be used for common dermatological disorders though greatly under-utilised. Animal products were mentioned by 38.0% respondents and cow ghee was found to be commonly used in the management of measles (IV = 0.88). Spiritual healing was found to be used mainly for measles and warts. Given the plethora of novel information documented from the present survey, it can be suggested that the Mauritian population still relies to a great extent on CAM which needs to be preserved and used sustainably. Nonetheless, further investigation is required to probe the possible active constituents that could be the basis of an evidence based investigation to discover new drugs.

Inundation Map at Imwon Port with Past and Virtual Tsunamis (과거 및 가상 지진해일에 의한 임원항의 침수예상도)

  • Kim, Tae-Rim;Cho, He-Rin;Cho, Yong-Sik
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • The scale of disaster and damage witnessed in the 2004 Indian Ocean Tsunami and the 2011 Great East Japan Tsunami has motivated researchers in developing foolproof disaster mitigation techniques for safety of coastal communities. This study focuses on developing tsunami hazard map by numerical modeling at Imwon Port to minimize losses of human beings and property damage when a real tsunami event occurs. A hazard map is developed based on inundation maps obtained by numerical modeling of 3 past and 11 virtual tsunami cases. The linear shallow-water equations with manipulation of frequency dispersion and the non-linear shallow-water equations are employed to obtain inundation maps. The inundation map gives the maximum extent of expected flooded area and corresponding inundation depths which helps in identifying vulnerable areas for unexpected tsunami attacks. The information can be used for planning and developing safety zones and evacuation structures to minimize damage in case of real tsunami events.

Rainfall Characteristics of the Madden-Julian Oscillation from TRMM Precipitation Radar: Convective and Stratiform Rain (TRMM 자료로 분석한 매든-줄리안 진동의 대류성 및 층운형 강수 특징)

  • Son, Jun-Hyeok;Seo, Kyong-Hwan
    • Atmosphere
    • /
    • v.20 no.3
    • /
    • pp.333-341
    • /
    • 2010
  • The stratiform rain fraction is investigated in the tropical boreal winter Madden-Julian oscillation (MJO) and summer intraseasonal oscillation (ISO) using Tropical Rainfall Measuring Mission (TRMM) Precipitation Rader data for the 11-yr period from 1998 to 2008. Composite analysis shows that the MJO/ISO produces larger stratiform rain rate than convective rain rate for nearly all phases following the propagating MJO/ISO deep clouds, with the greatest stratiform rainfall amount when the MJO/ISO center is located over the central-eastern Indian Ocean and the western Pacific. The fraction of the intraseasonally filtered stratiform rainfall compared to total rainfall (i.e., convective plus stratiform rainfall) amounts to 53~56%, which is 13~16% larger than the stratiform rain fraction estimated for the same data on seasonal-to-annual time scales by Schumacher and Houze. This indicates that the MJO/ISO exhibits the organized rainfall process which is characterized by the shallow convection/heating at the incipient phase and the subsequent flare-up of strong deep convection, followed by the development of stratiform clouds at the upper troposphere.

A multi-scale analysis of the interdecadal change in the Madden-Julian Oscillation (MJO의 다중스케일 분석을 통한 수십년 변동성)

  • Lee, Sang-Heon;Seo, Kyong-Hwan
    • Atmosphere
    • /
    • v.21 no.2
    • /
    • pp.143-149
    • /
    • 2011
  • A new multi-timescale analysis method, Ensemble Empirical Mode Decomposition (EEMD), is used to diagnose the variation of the MJO activity determined by 850hPa and 200hPa zonal winds from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) Reanalysis data for the 56-yr period from 1950 to 2005. The results show that MJO activity can be decomposed into 9 quasi-periodic oscillations and a trend. With each level of contribution of the quasi-periodic oscillation discussed, the bi-seasonal oscillation, the interannual oscillation and the trend of the MJO activity are the most prominent features. The trend increases almost linearly, so that prior to around 1978 the activity of the MJO is lower than that during the latter part. This may be related to the tropical sea surface temperature(SST). It is speculated that the interdecadal change in the MJO activity appeared in around 1978 is related to the warmer SST in the equatorial warm pool, especially over the Indian Ocean.

An artificial neural network residual kriging based surrogate model for curvilinearly stiffened panel optimization

  • Sunny, Mohammed R.;Mulani, Sameer B.;Sanyal, Subrata;Kapania, Rakesh K.
    • Advances in Computational Design
    • /
    • v.1 no.3
    • /
    • pp.235-251
    • /
    • 2016
  • We have performed a design optimization of a stiffened panel with curvilinear stiffeners using an artificial neural network (ANN) residual kriging based surrogate modeling approach. The ANN residual kriging based surrogate modeling involves two steps. In the first step, we approximate the objective function using ANN. In the next step we use kriging to model the residue. We optimize the panel in an iterative way. Each iteration involves two steps-shape optimization and size optimization. For both shape and size optimization, we use ANN residual kriging based surrogate model. At each optimization step, we do an initial sampling and fit an ANN residual kriging model for the objective function. Then we keep updating this surrogate model using an adaptive sampling algorithm until the minimum value of the objective function converges. The comparison of the design obtained using our optimization scheme with that obtained using a traditional genetic algorithm (GA) based optimization scheme shows satisfactory agreement. However, with this surrogate model based approach we reach optimum design with less computation effort as compared to the GA based approach which does not use any surrogate model.