DOI QR코드

DOI QR Code

Other faunas, coral rubbles, and soft coral covers are important predictors of coral reef fish diversity, abundance, and biomass

  • Imam Bachtiar (Department of Mathematics and Science Education, FKIP, University of Mataram) ;
  • Tri Aryono Hadi (Research Center for Oceanography, National Board for Research and Innovation) ;
  • Karnan Karnan (Department of Mathematics and Science Education, FKIP, University of Mataram) ;
  • Naila Taslimah Bachtiar (National Board for Capture Fisheries)
  • Received : 2022.07.21
  • Accepted : 2023.01.16
  • Published : 2023.04.30

Abstract

Coral reef fisheries are prominent for the archipelagic countries' food sufficiency and security. Studies showed that fish abundance and biomass are affected by biophysical variables. The present study determines which biophysical variables are important predictors of fish diversity, abundance, and biomass. The study used available monitoring data from the Indonesian Research Center for Oceanography, the National Board for Research and Innovation. Data were collected from 245 transects in 19 locations distributed across the Indonesian Archipelago, including the eastern Indian Ocean, Sunda Shelf (Karimata Sea), Wallacea (Flores and Banda Seas), and the western Pacific Ocean. Principal component analysis and multiple regression model were administered to 13 biophysical metrics against 11 variables of coral reef fishes, i.e., diversity, abundance, and biomass of coral reef fishes at three trophic levels. The results showed for the first time that the covers of other fauna, coral rubbles, and soft corals were the three most important predictor variables for nearly all coral reef fish variables. Other fauna cover was the important predictor for all 11 coral reef fish variables. Coral rubble cover was the predictor for ten variables, but carnivore fish abundance. Soft coral cover was a good predictor for corallivore, carnivore, and targeted fishes. Despite important predictors for corallivore and carnivore fish variables, hard coral cover was not the critical predictor for herbivore fish variables. The other important predictor variables with a consistent pattern were dead coral covered with algae and rocks. Dead coral covered with algae was an important predictor for herbivore fishes, while the rock was good for only carnivore fishes.

Keywords

Acknowledgement

The study was part of the national program, Reef Health Monitoring, that was funded by the World Bank in the Coral Reef Rehabilitation and Management Program-Coral Triangle Initiative (COREMAP-CTI) project. Data collections were carried out by RCO-LIPI in collaboration with six states universities of Indonesia, i.e., University of Mataram, Diponegoro University, Hasanuddin University, Sam Ratulangi University, Bung Hata University, and Raja Ali Haji University.

References

  1. Agudo-Adriani EA, Cappelletto J, Cavada-Blanco F, Croquer A. Structural complexity and benthic cover explain reef-scale variability of fish assemblages in Los Roques National Park, Venezuela. Front Mar Sci. 2019;6:690. 
  2. Arias-Gonzalez JE, Fung T, Seymour RM, Garza-Perez JR, Acosta-Gonzalez G, Bozec YM, et al. A coral-algal phase shift in Mesoamerica not driven by changes in herbivorous fish abundance. PLOS ONE. 2017;12:e0174855. 
  3. Bachtiar I, Hadi TA. Differential impacts of 2016 coral bleaching on coral reef benthic communities at Sekotong Bay, Lombok Barat, Indonesia. Biodiversitas. 2019;20:570-5.  https://doi.org/10.13057/biodiv/d200237
  4. Bachtiar I, Jefri E, Abrar M, Hadi TA. Biak and Wakatobi reefs are the two hottest hotspots of coral reef fish diversity and abundance in the Indonesian Archipelago. Fish Aquat Sci. 2022;25:549-58.  https://doi.org/10.47853/FAS.2022.e49
  5. Bachtiar I, Suharsono, Damar A, Zamani NP. Practical resilience index for coral reef assessment. Ocean Sci J. 2019;54:117-27.  https://doi.org/10.1007/s12601-019-0002-1
  6. Beaman RJ, Harris PT. Geophysical variables as predictors of megabenthos assemblages from the northern Great Barrier Reef, Australia. In: Todd BJ, Greene HG, editors. Mapping the seafloor for habitat characterization: GAC special paper 47. St. John, NL: Geological Association of Canada; 2007. p. 247-64. 
  7. Cabral RB, Geronimo RC. How important are coral reefs to food security in the Philippines? Diving deeper than national aggregates and averages. Mar Policy. 2018;91:136-41.  https://doi.org/10.1016/j.marpol.2018.02.007
  8. Chadwick NE, Morrow KM. Competition among sessile organisms on coral reefs. In: Dubinsky Z, Stambler N, editors. Coral reefs: an ecosystem in transition. Dordrecht: Springer; 2011. p. 347-71. 
  9. Epstein HE, Kingsford MJ. Are soft coral habitats unfavourable? A closer look at the association between reef fishes and their habitat. Environ Biol Fishes. 2019;102:479-97.  https://doi.org/10.1007/s10641-019-0845-4
  10. Foo SA, Walsh WJ, Lecky J, Marcoux S, Asner GP. Impacts of pollution, fishing pressure, and reef rugosity on resource fish biomass in West Hawaii. Ecol Appl. 2021;31:e2213. 
  11. Froese R, Pauly D. FishBase 2000: concepts, designs and data sources. Los Banos: International Center for Living Aquatic Resources Management; 2000. 
  12. Gilmour JP, Smith LD, Heyward AJ, Baird AH, Pratchett MS. Recovery of an isolated coral reef system following severe disturbance. Science. 2013;340:69-71.  https://doi.org/10.1126/science.1232310
  13. Graham NAJ, Wilson SK, Pratchett MS, Polunin NVC, Spalding MD. Coral mortality versus structural collapse as drivers of corallivorous butterflyfish decline. Biodivers Conserv. 2009;18:3325-36.  https://doi.org/10.1007/s10531-009-9633-3
  14. Harborne AR, Mumby PJ, Ferrari R. The effectiveness of different meso-scale rugosity metrics for predicting intra-habitat variation in coral-reef fish assemblages. Environ Biol Fishes. 2012;94:431-42.  https://doi.org/10.1007/s10641-011-9956-2
  15. Hoegh-Guldberg O, Kennedy EV, Beyer HL, McClennen C, Possingham HP. Securing a long-term future for coral reefs. Trends Ecol Evol. 2018;33:936-44.  https://doi.org/10.1016/j.tree.2018.09.006
  16. Huntington BE, Karnauskas M, Lirman D. Corals fail to recover at a Caribbean marine reserve despite ten years of reserve designation. Coral Reefs. 2011;30:1077-85.  https://doi.org/10.1007/s00338-011-0809-4
  17. Jennings S, Polunin NVC. Impacts of predator depletion by fishing on the biomass and diversity of non-target reef fish communities. Coral Reefs. 1997;16:71-82.  https://doi.org/10.1007/s003380050061
  18. Kohler KE, Gill SM. Coral point count with Excel extensions (CPCe): a visual basic program for the determination of coral and substrate coverage using random point count methodology. Comput Geosci. 2006;32:1259-69.  https://doi.org/10.1016/j.cageo.2005.11.009
  19. Malik SAA, Bedoux G, Robledo D, Garcia-Maldonado JQ, Freile-Pelegrin Y, Bourgougnon N. Chemical defense against microfouling by allelopathic active metabolites of Halymenia floresii (Rhodophyta). J Appl Phycol. 2020;32:2673-87.  https://doi.org/10.1007/s10811-020-02094-4
  20. Mellin C, Bradshaw CJA, Meekan MG, Caley MJ. Environmental and spatial predictors of species richness and abundance in coral reef fishes. Glob Ecol Biogeogr. 2010;19:212-22.  https://doi.org/10.1111/j.1466-8238.2009.00513.x
  21. Morais RA, Bellwood DR. Pelagic subsidies underpin fish productivity on a degraded coral reef. Curr Biol. 2019;29:1521-7.  https://doi.org/10.1016/j.cub.2019.03.044
  22. Nanami A. Spatial distribution and feeding substrate of butterflyfishes (family Chaetodontidae) on an Okinawan coral reef. PeerJ. 2020;8:e9666. 
  23. Newman MJH, Paredes GA, Sala E, Jackson JBC. Structure of Caribbean coral reef communities across a large gradient of fish biomass. Ecol Lett. 2006;9:1216-27.  https://doi.org/10.1111/j.1461-0248.2006.00976.x
  24. Parravicini V, Kulbicki M, Bellwood DR, Friedlander AM, Arias-Gonzalez JE, Chabanet P, et al. Global patterns and predictors of tropical reef fish species richness. Ecography. 2013;36:1254-62.  https://doi.org/10.1111/j.1600-0587.2013.00291.x
  25. Richardson LE, Graham NAJ, Pratchett MS, Hoey AS. Structural complexity mediates functional structure of reef fish assemblages among coral habitats. Environ Biol Fishes. 2017;100:193-207.  https://doi.org/10.1007/s10641-016-0571-0
  26. Ruppert JLW, Vigliola L, Kulbicki M, Labrosse P, Fortin MJ, Meekan MG. Human activities as a driver of spatial variation in the trophic structure of fish communities on Pacific coral reefs. Glob Change Biol. 2018;24:e67-79.  https://doi.org/10.1111/gcb.13882
  27. Russ GR, Rizzari JR, Abesamis RA, Alcala AC. Coral cover a stronger driver of reef fish trophic biomass than fishing. Ecol Appl. 2021;31:e02224. 
  28. Sancelme T, Goetze J, Jaquemet S, Meekan MG, Flam A, Watts AM, et al. Contrasting patterns in the abundance of fish communities targeted by fishers on two coral reefs in southern Mozambique. Afr J Mar Sci. 2020;42:95-107.  https://doi.org/10.2989/1814232X.2020.1731597
  29. Sartori G, Taylor ML, Sebastian P, Prasetyo R. Coral reef carnivorous fish biomass relates to oceanographic features depending on habitat and prey preference. Mar Environ Res. 2021;172:105504. 
  30. Sequeira AMM, Mellin C, Lozano-Montes HM, Vanderklift MA, Babcock RC, Haywood MDE, et al. Transferability of predictive models of coral reef fish species richness. J Appl Ecol. 2016;53:64-72.  https://doi.org/10.1111/1365-2664.12578
  31. Stuart-Smith RD, Brown CJ, Ceccarelli DM, Edgar GJ. Ecosystem restructuring along the Great Barrier Reef following mass coral bleaching. Nature. 2018;560:92-6.  https://doi.org/10.1038/s41586-018-0359-9
  32. Syms C, Jones GP. Soft corals exert no direct effects on coral reef fish assemblages. Oecologia. 2001;127:560-71.  https://doi.org/10.1007/s004420000617
  33. Teh LSL, Teh LCL, Rashid Sumaila U, Cheung W. Time discounting and the overexploitation of coral reefs. Environ Resour Econ. 2015;61:91-114.  https://doi.org/10.1007/s10640-013-9674-7
  34. Thompson DM, Kleypas J, Castruccio F, Curchitser EN, Pinsky ML, Jonsson B, et al. Variability in oceanographic barriers to coral larval dispersal: do currents shape biodiversity? Prog Oceanogr. 2018;165:110-22.  https://doi.org/10.1016/j.pocean.2018.05.007
  35. Tootell JS, Steele MA. Distribution, behavior, and condition of herbivorous fishes on coral reefs track algal resources. Oecologia. 2016;181:13-24.  https://doi.org/10.1007/s00442-015-3418-z
  36. Wen CKC, Pratchett MS, Almany GR, Jones GP. Patterns of recruitment and microhabitat associations for three predatory coral reef fishes on the southern Great Barrier Reef, Australia. Coral Reefs. 2013;32:389-98.  https://doi.org/10.1007/s00338-012-0985-x
  37. Williams ID, Kindinger TL, Couch CS, Walsh WJ, Minton D, Oliver TA. Can herbivore management increase the persistence of Indo-Pacific coral reefs? Front Mar Sci. 2019;6:557. 
  38. Wismer S, Tebbett SB, Streit RP, Bellwood DR. Young fishes persist despite coral loss on the Great Barrier Reef. Commun Biol. 2019;2:456. 
  39. Wolfe K, Kenyon TM, Mumby PJ. The biology and ecology of coral rubble and implications for the future of coral reefs. Coral Reefs. 2021;40:1769-806.  https://doi.org/10.1007/s00338-021-02185-9
  40. Yulianto I, Hammer C, Wiryawan B, Pardede ST, Kartawijaya T, Palm HW. Improvement of fish length estimates for underwater visual census of reef fish biomass. J Appl Ichthyol. 2015;31:308-14.  https://doi.org/10.1111/jai.12672