• 제목/요약/키워드: Independent Failure

검색결과 404건 처리시간 0.022초

An Economic Design of a k-out-of-n System

  • Yun, Won-Young;Kim, Gue-Rae;Gopi Chattopadhyay
    • International Journal of Reliability and Applications
    • /
    • 제4권2호
    • /
    • pp.51-56
    • /
    • 2003
  • A k-out-of-n system with n identical and independent components is considered in which the components takes two types of function: 0 (open-circuit) or 1 (closed) on command (e.g. electromagnetic relays and solid state switches). Components are subject to two types of failure on command: failure to close or failure to open. In our k-out-of-n system, failure of (n-k)+1 or more components to close causes to the close failure of the system, or failure of k or more components to open causes the open failure of the system. The long-run average cost rate is obtained. We find the optimal k minimizing the long run average cost rate for given n. A numerical example is presented.

  • PDF

전광 통신망에서 장애 위치에 독립적인 경로 복구 방법 (A Path Restoration Method Independent of Failure Location in All-Optical Networks)

  • 이명문;유진태;김용범;박진우
    • 한국통신학회논문지
    • /
    • 제26권11C호
    • /
    • pp.85-93
    • /
    • 2001
  • 본 논문에서는 전광 통신망에서 장애 위치에 독립적인 경로 복구 방법을 제안하고 그 필요 파장 수를 계산한다. 제안된 방법에서는 모든 링크 장애에 대해 하나의 대체 파장만을 이용하기 때문에 고정 파장 송수신기만을 사용한 수가 있어 노드 구축 경비를 줄인 수 있다. 또한 운용 경로와 대체 경로가 공유되지 않는다면 장애의 위치에 관계없이 대체 경로와 대체 파장이 사전에 결정되어 장애의 검출만으로 복구 과정이 바로 시작될 수 있다. 이러한 특징과 제안되는 병렬 크로스커넥션을 수행하도록 하는 메시지 전달 기법을 사용하면 복구 과정을 간단하고 빠르게 만들 수 있다. 그리고 제안된 복구 방법에서 필요한 파장 수를 계산하고 필요한 파장 수가 가변 대체 파장을 사용하는 복구 방법에서 필요한 파장 수와 서로 비슷함을 보임으로써 전송 경비의 증가 또한 거의 없음을 보인다.

  • PDF

Failure probability of tall buildings with TMD in the presence of structural, seismic, and soil uncertainties

  • Sadegh, Etedali;Mohammad, Seifi;Morteza, Akbari
    • Structural Engineering and Mechanics
    • /
    • 제85권3호
    • /
    • pp.381-391
    • /
    • 2023
  • The seismic performance of the tall building equipped with a tuned mass damper (TMD) considering soil-structure interaction (SSI) effects is well studied in the literature. However, these studies are performed on the nominal model of the seismic-excited structural system with SSI. Hence, the outcomes of the studies may not valid for the actual structural system. To address the study gap, the reliability theory as a useful and powerful method is utilized in the paper. The present study aims to carry out reliability analyses on tall buildings equipped with TMD under near-field pulse-like (NFPL) ground motions considering SSI effects using a subset simulation (SS) method. In the presence of uncertainties of the structural model, TMD device, foundation, soil, and near-field pulse-like ground motions, the numerical studies are performed on a benchmark 40-story building and the failure probabilities of the structures with and without TMD are evaluated. Three types of soils (dense, medium, and soft soils), different earthquake magnitudes (Mw = 7,0. 7,25. 7,5 ), different nearest fault distances (r = 5. 10 and 15 km), and three seismic performance levels of immediate occupancy (IO), life safety (LS), and collapse prevention (CP) are considered in this study. The results show that tall buildings built near faults and on soft soils are more affected by uncertainties of the structural and ground motion models. Hence, ignoring these uncertainties may result in an inaccurate estimation of the maximum seismic responses. Also, it is found the TMD is not able to reduce the failure probabilities of the structure in the IO seismic performance level, especially for high earthquake magnitudes and structures built near the fault. However, TMD is significantly effective in the reduction of failure probability for the LS and CP performance levels. For weak earthquakes and long fault distances, the failure probabilities of both structures with and without TMD are near zero, and the efficiency of the TMD in the reduction of failure probabilities is reduced by increasing earthquake magnitudes and the reduction of fault distance. As soil softness increases, the failure probability of structures both with and without TMD often increases, especially for severe near-fault earthquake motion.

Failure analysis of tubes under multiaxial proportional and non-proportional loading paths

  • Mohammad Hossein Iji;Ali Nayebi
    • Steel and Composite Structures
    • /
    • 제47권2호
    • /
    • pp.289-296
    • /
    • 2023
  • The failure of a thin-walled tube was studied in this paper based on three failure models. Both proportional and non-proportional loading paths were applied. Proportional loading consisted of combined tension-torsion. Cyclic non-proportional loading was also applied. It was a circular out-of-phase axial-shear stress loading path. The third loading path was a combination of a constant internal pressure and a bending moment. The failure models under study were equivalent plastic strain, modified Mohr-Coulomb (Bai-Wierzbicki) and Tearing parameter models. The elasto-plastic analysis was conducted using J2 criterion and nonlinear kinematic hardening. The return mapping algorithm was employed to numerically solve the plastic flow relations. The effects of the hydrostatic stress on the plastic flow and the stress triaxiality parameter on the failure were discussed. Each failure model under study was utilized to predict failure. The failure loads obtained from each model were compared with each other. The equivalent plastic strain model was independent from the stress triaxiality parameter, and it predicted the highest failure load in the bending problem. The modified Mohr-Coulomb failure model predicted the lowest failure load for the range of the stress triaxiality parameter and Lode's angle.

Stochastic analysis of a non-identical two-unit parallel system with common-cause failure, critical human error, non-critical human error, preventive maintenance and two type of repair

  • El-Sherbeny, M.S.
    • International Journal of Reliability and Applications
    • /
    • 제11권2호
    • /
    • pp.123-138
    • /
    • 2010
  • This paper investigates a mathematical model of a system composed of two non-identical unit parallel system with common-cause failure, critical human error, non-critical human error, preventive maintenance and two type of repair, i.e. cheaper and costlier. This system goes for preventive maintenance at random epochs. We assume that the failure, repair and maintenance times are independent random variables. The failure rates, repair rates and preventive maintenance rate are constant for each unit. The system is analyzed by using the graphical evaluation and review technique (GERT) to obtain various related measures and we study the effect of the preventive maintenance preventive maintenance on the system performance. Certain important results have been derived as special cases. The plots for the mean time to system failure and the steady-state availability A(${\infty}$) of the system are drawn for different parametric values.

  • PDF

Tan-Cheng 파손기준을 이용한 직물 CFRP 적층판의 원거리 하중에 대한 파괴강도 평가 (Evaluation of Failure Strength of Woven CFRP Composite Plate Subject to Axial Load by Tan-Cheng Failure Criterion)

  • 김상영;박홍선;강민성;;최정훈;구재민;석창성
    • 대한기계학회논문집A
    • /
    • 제33권4호
    • /
    • pp.360-365
    • /
    • 2009
  • In the manufacture of CFRP(Carbon Fiber Reinforced Polymer Composite) composite structures, various independent components join by bolts and pins. Holes for bolts and pins have an effect on the failure strength of such structures, because those act as notches in structures. The failure characteristic of such structures are different from those of plain plate subject to remote load. In this paper, tensile properties of woven CFRP composite plates with laminates of $0^{\circ}$, $30^{\circ}$ and $45^{\circ}$ were obtained according to ASTM D 3039. By using obtained tensile failure strength and Tan-Cheng failure criterion, tensile failure strength of CFRP laminate with arbitrary fiber angle were evaluated. Also, the degradation of tensile properties by center hole(${\phi}10mm$) with a remote load was evaluated and the failure strengths were applied to Tan's failure criterion, similarly.

격자 구조 회선 교환망에서의 호 차단 확률 및 Link Failure Model에 근거한 신뢰도 성능 분석 (Performance Analysis of Reliability Based On Call Blocking Probability And Link Failure Model in Grid Topology Circuit Switched Networks)

  • 이상준;박찬열
    • 한국컴퓨터정보학회논문지
    • /
    • 제1권1호
    • /
    • pp.25-36
    • /
    • 1996
  • 본 논문은 격자 구조 회선 교환 망에서 발생할 수 있는 호 차단 확률 및 failure model을 설정하여 신뢰도를 분석하였다 특히 failure model에서는 link failure 모델을 고려하였다. 대상 모델은.flooding search routing 방식을 사용하여 패킷을 통화 대상자 노드에 전송하였다. 이때. 각 링크failure는 독립적이라고 가정하였다. 이와 같은 failure모델의 성능을 평가하기 위한 방법으로서 joint probability를 이용하여 소규모 격자 구조 회선 교환망의 신뢰도를 분석해 보았으며. 이를 시뮬레이션 한 값과 비교해 보았다 또한. 통신망에서 주요한 성능 지표중 하나8! 호 차단 확률을 구하여 회선망의 신뢰도를 평가하였다.

  • PDF

다중 종속 고장상태를 갖는 공정시스템의 신뢰성 모델 (A Reliability Model of Process Systems with Multiple Dependent Failure States)

  • 최수형
    • 한국안전학회지
    • /
    • 제33권6호
    • /
    • pp.37-41
    • /
    • 2018
  • Process safety technology has developed from qualitative methods such as HAZOP (hazard and operability study) to semi-quantitative methods such as LOPA (layer of protection analysis), and quantitative methods are actively studied these days. Quantitative risk assessment (QRA) is often based on fault tree analysis (FTA). FTA is efficient, but difficult to apply when failure events are not independent of each other. This problem can be avoided using a Markov process (MP). MP requires definition of all possible states, and thus, generally, is more complicated than FTA. A method is proposed in this work that uses an MP model and a Weibull distribution model in order to construct a reliability model for multiple dependent failures. As a case study, a pressure safety valve (PSV) is considered, for which there are three kinds of failure, i.e. open failure, close failure, and gas tight failure. According to recently reported inspection results, open failure and close failure are dependent on each other. A reliability model for a PSV group is proposed in this work that is to reproduce these results. It is expected that the application of the proposed method can be expanded to QRA of various systems that have partially dependent multiple failure states.

소성불안정성에 의한 관재 하이드로포밍 공정에서의 터짐 불량 예측 (A Prediction of Bursting Failure in Tube Hydroforming Process Based on Plastic Instability)

  • 김상우;김정;박훈재;강범수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.210-213
    • /
    • 2004
  • Based on plastic instability, analytical prediction of bursting failure on tube hydroforming processes under combined internal pressure and independent axial feeding is carried out. Bursting is irrecoverable phenomenon due to local instability under excessive tensile stresses. In order to predict the bursting failure, three different classical necking criteria such as diffuse necking criterion for sheet and tube, local necking criterion for sheet are introduced. The incremental theory of plasticity fur anisotropic material is adopted and then the hydroforming limit and bursting failure diagram with respect to axial feeding and hydraulic pressure are presented. In addition, the influences of the material properties such as anisotropy parameter, strain hardening exponent on bursting pressure are investigated. As results of the above approach, the hydroforming limit in view of bursting failure is verified with experimental results.

  • PDF

네킹발생조건에 의한 관재 액압성형 공정에서의 터짐 불량 예측 (A Prediction of Bursting Failure in Tube Hydroforming Process Based on Necking Conditions)

  • 김상우;김정;박훈재;강범수
    • 소성∙가공
    • /
    • 제13권7호
    • /
    • pp.629-634
    • /
    • 2004
  • Based on plastic instability, analytical prediction of bursting failure on tube hydroforming processes under combined infernal pressure and independent axial feeding is carried out. Bursting is irrecoverable phenomenon due to local instability under excessive tensile stresses. In order to predict the bursting failure, three different classical necking criteria such as diffuse necking criterion for sheet and tube, local necking criterion for sheet are introduced. The incremental theory of plasticity for anisotropic material is adopted and then the hydroforming limit and bursting failure diagram with respect to axial feeding and hydraulic pressure are presented. In addition, the influences of the material properties such as anisotropy Parameter, strain hardening exponent and strength coefficient on bursting Pressure are investigated. As results of the above approach, the hydroforming limit in view of bursting failure is verified with experimental results.