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Abstract. This paper investigates a mathematical model of a system composed of 
two non-identical unit parallel system with common-cause failure, critical human 
error, non-critical human error, preventive maintenance and two type of repair, i.e. 
cheaper and costlier. This system goes for preventive maintenance at random epochs. 
We assume that the failure, repair and maintenance times are independent random 
variables. The failure rates, repair rates and preventive maintenance rate are constant 
for each unit. The system is analyzed by using the graphical evaluation and review 
technique (GERT) to obtain various related measures and we study the effect of the 
preventive maintenance preventive maintenance on the system performance. Certain 
important results have been derived as special cases. The plots for the mean time to 
system failure and the steady-state availability ( )A ∞ of the system are drawn for 
different parametric values. 
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1 . INTRODUCTION 
 

Many authors ( Goel and Gupta, 1984; Goel et al., 1985) have studied a two similar 
or dissimilar unit cold standby redundant system with preventive maintenance, inspection 
and two types of repairs. Mokkaddis et.al (2008) studied a two-unit cold standby system 
with four different modes [normal, human errors, partial hardware failure and total 
hardware failures]. The cost-benefit analysis of a two-unit cold standby system with two 
types of repair - minor (regular) and major (expert) are considered by (El-Sherbeny et al., 
2009). Mokkaddis et al. (2005) studied some characteristics of a single-man-machine 
system unit operating under different physical conditions. The failure, repair and change 
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of physical conditions (good - poor) are stochastically independent random variables each 
having an arbitrary distribution. The stochastic analysis of a non-identical two-unit 
parallel system with common-cause failure by graphical evaluation and review technique 
(GERT) are investigated by Sridharan and Kalyani (2002). Mokkaddis et al. (2005) 
studied a single-unit repairable system with helping unit. The single unit is main and the 
other is helping. Initially both units are operative, the functioning of the main unit is 
assumed dependent on the helping unit if it is operative, and otherwise it is independent 
with an increasing failure rate. A stochastic analysis of a dissimilar two-unit parallel 
system with preventive maintenance and common-cause failure are investigated by 
Mokkaddis et al. (2008). Wang et al. (2006) studies the cost benefit analysis of series 
systems with cold standby components and a repairable service station, when the service 
times and the failure times of the primary components are assumed exponentially 
distributed. The breakdown times and the repair times of the service station are also 
assumed exponentially distributed. Mokkaddis et al. (2009) considered the reliability and 
mean time to system failure (MTTF) analysis of a two-state complex with repairable 
system, consisting of two sub-systems A and B arranged in series, incorporating the 
concept of hardware and human failures. Wang et al. (2006) considered four different 
system configurations with warm standby components and standby switching failures are 
compared based on their reliability and availability, when the time-to-repair and the time-
to-failure for each of the primary and warm standby components are assumed to follow 
the negative exponential distribution. A two-unit warm standby system with constant 
failure rate and two types of repairmen and patience time are investigated by Mokkaddis 
et al. (2009). The reliability analysis of two mathematical models representing electric 
power systems operating in fluctuating outdoor weather (i.e., normal and stormy weather) 
and compared between two models are investigated by Mokaddis et al., (2010). Mahmoud 
and Moshref (2010) studies the stochastic analysis of a two-unit cold standby system 
considering hardware failure, human error failure and preventive maintenance (PM). 
Human error is defined as a failure to perform the performance of a prohibited action, 
which could result in damage to equipment and property or disruption of scheduled 
operations. It can be classified as either critical or non-critical. A critical human error is 
one which causes the failure of the entire system, for example, fire due to a human error in 
a room where a redundant system is located will cause total system failure. On the other 
hand, a non-critical human error does not lead to a catastrophic result. The occurrence of 
human errors can due to incorrect actions, maintenance errors, misinterpretation of 
instruments and so on. 

A CCF is defined as the failure of single unit or multiple units due to a single 
common-cause. Some of the CCF may occur due to the following reasons. 

• abnormal environmental conditions, e.g. temperature, pressure; 
• defective design; 
• improper maintenance of machines by workers; and 
• natural catastrophe like fire, . . . etc. 
The present paper is devoted to deal two-unit (non-identical) parallel system with 

additional preventive maintenance on regenerative state 0S  at random epochs. The main-
time to system failure, steady-state availability, busy-time and idle-time for the service 
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facility are obtained using the graphical evaluation and review technique (GERT). The 
effect of preventive maintenance on the system performance is shown graphically. 

The results obtained by Sridharan and Kalyani (2002) and Goel and Shrivastava 
(1992) can be derived from present paper as a special case. 
 
 

2. ASSUMPTIONS 
 
1. The system consists of a single unit having two non-identical parallel components, say 

A and B. 
2. The system remains operative even if a single life component operates. 
3. The failure of a component changes the lift time parameter of the other. 
4. The common cause failure and other failures are independent of each other. 
5. The system is said to be down when both units are failed are inoperative. 
6. The online unit suffers four types of failures, namely, hardware error, non-critical 

human error, critical human error and common-cause failure. 
7. Common cause failure, hardware error, non-critical human error and critical human 

error can occur when one unit has failed and the other is operating. 
8. There are two types of repairs i.e. 1) repair low-cost with probability π  and 2) costly 

repairs with probability 1π π= − . 
9. Both the components ( when failed) can be replaced simultaneously. 
10. Preventive maintenance (e.g. overhaul, inspection, minor, repairs, etc.) is provided to 

this system at random epochs when the system is in the state 0S  defined below. 
11. The repaired or (replaced) unit works like new. 
 
 

3. NOTATION 
 

α  constant hardware failure rate of component  A, 

β  constant hardware failure rate of component  B, 

1α  constant non-critical human error failure rate of component  A, 

1β  constant non-critical human error failure rate of component  B, 

2α  constant hardware failure rate of component A when B has already failed, 

2β  constant hardware failure rate of component B when A has already failed, 

3α  constant common cause failure rate of component A when B has already failed, 

3β  constant common cause failure rate of component B when A has already failed, 

4α  constant critical human error failure rate of component A when B has already 
failed, 
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4β  constant critical human error failure rate of component B when A has already 
failed, 

η  constant common cause failure rate of the system when both the units are 
operating, 

1η  constant critical human error failure rate of the system when both the units are 
operating, 

θ  rate of simultaneous replacement of components A and B (due to hardware 
error failure), 

1θ  rate of simultaneous replacement of components A and B (due to common 
cause failure), 

2θ  rate of simultaneous replacement of components A and B (due to critical 
human error failure), 

δ ϕ  costlier repair rate of a component A or component B  receptivity, 

1 1δ ϕ  cheaper repair rate of a component A or component B  receptivity, 
 

λ  constant rate of PM time, 

κ  constant rate of time for taking a unit into PM, 

iμ  mean sojourn in state iS ,   0,...,8i∀ = . 

,i jp  The transition probability from state i to state j. 

From the above assumptions of our problem, it must be assumed that ( )2α α> , 

( )2β β> , ( )1δ δ> , ( )1ϕ ϕ> , ( )π π> and { } { }1 2 1 1, , , , ,θ θ θ δ δ ϕ ϕ< . 
 
Symbols for the states of the system 

NA  Component  A in normal mode and operative. 

NB  Component  B in normal mode and operative. 

1F SA  Component  A in failure (hardware failure or non-critical human error) mode and 
under repair of type 1. 

1F SB  Component  B in failure (hardware failure or non-critical human error) mode and 
under repair of type 1. 

2F SA  Component  A in failure (hardware failure or non-critical human error) mode and 
under repair of type 2. 

2F SB  Component  B in failure (hardware failure or non-critical human error) mode and 
under repair of type 2. 

FA  Component  A in failure (hardware failure or non-critical human error) mode and 
needs replacement. 

FB  Component  B in failure (hardware failure or non-critical human error) mode and 
needs replacement. 

N PA  Component  A in normal mode and under preventive maintenance. 
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N PB  Component  B in normal mode and under preventive maintenance. 

F CA  Component  A in failure (common cause ) mode and needs replacement. 

F CB  Component  B in failure (common cause ) mode and needs replacement. 

FCHA  Component  A in failure (critical human error) mode and needs replacement. 

F CHB  Component  B in failure (critical human error) mode and needs replacement. 

 
Considering these symbols, the system can be in any one of the following states. 

( )0 ,N NS A B=  ( )1 1,F S NS A B=  ( )2 2 ,F S NS A B=  

( )3 1,N F SS A B=  ( )4 2,N F SS A B=  ( )5 ,N P N PS A B=  

( )6 ,F FS A B=  ( )7 ,F C F CS A B=  ( )8 ,FCH F CHS A B=  

The system can have any one of the following states: 
             0S , 1S , 2S , 3S , 4S  and 5S  are up states and 6S , 7S  and 8S are down states 
(see Table 3.1). 

Table 3.1. Transition rates 
 To 0S  1S  2S  3S  4S  5S 6S  7S  8S
From           

0S   --- ( )1π α α+  ( )1π α α+ ( )1π β β+ ( )1π β β+ κ --------- η  
1η

1S   1δ  ----------- ----------- ----------- ----------- --- 2 1β β+  
3β  4β

2S   δ  ----------- ----------- ----------- ----------- --- 2 1β β+  
3β  4β

3S   1ϕ  ----------- ----------- ----------- ----------- --- 2 1α α+  
3α  4α

4S   ϕ  ----------- ----------- ----------- ----------- --- 2 1α α+  
3α  4α

5S   λ  ----------- ----------- ----------- ----------- --- --------- --- --- 

6S   θ  ----------- ----------- ----------- ----------- --- --------- --- --- 

7S   1θ  ----------- ----------- ----------- ----------- --- --------- --- --- 

8S   2θ  ----------- ----------- ----------- ----------- --- --------- --- --- 
 
 

4. TRANSITION PROBABILITIES AND MEAN SOJOURN TIMES 
 

The probability of transition from state i to state j is given by 
( )1

0,1
1 1 1

p
π α α

α β α β κ η η
+

=
+ + + + + +

,
( )1

0,2
1 1 1

p
π α α

α β α β κ η η
+

=
+ + + + + +

, 
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( )1
0,3

1 1 1

p
π β β

α β α β κ η η
+

=
+ + + + + +

,
( )1

0,4
1 1 1

p
π β β

α β α β κ η η
+

=
+ + + + + +

, 

0,5
1 1 1

p κ
α β α β κ η η

=
+ + + + + +

, 0,7
1 1 1

p η
α β α β κ η η

=
+ + + + + +

, 

1
0,8

1 1 1

p η
α β α β κ η η

=
+ + + + + +

, 1
1,0

1 1 2 3 4

p δ
δ β β β β

=
+ + + +

, 

1 2
1,6

1 1 2 3 4

p β β
δ β β β β

+
=

+ + + +
, 3

1,7
1 1 2 3 4

p β
δ β β β β

=
+ + + +

, 

4
1,8

1 1 2 3 4

p β
δ β β β β

=
+ + + +

, 2,0
1 2 3 4

p δ
δ β β β β

=
+ + + +

, 

1 2
2,6

1 2 3 4

p β β
δ β β β β

+
=

+ + + +
, 3

2,7
1 2 3 4

p β
δ β β β β

=
+ + + +

, 

4
2,8

1 2 3 4

p β
δ β β β β

=
+ + + +

, 1
3,0

1 1 2 3 4

p ϕ
ϕ α α α α

=
+ + + +

, 

1 2
3,6

1 1 2 3 4

p α α
ϕ α α α α

+
=

+ + + +
, 3

3,7
1 1 2 3 4

p α
ϕ α α α α

=
+ + + +

, 

4
3,8

1 1 2 3 4

p α
ϕ α α α α

=
+ + + +

, 4,0
1 2 3 4

p ϕ
ϕ α α α α

=
+ + + +

, 

1 2
4,6

1 2 3 4

p α α
ϕ α α α α

+
=

+ + + +
, 3

4,7
1 2 3 4

p α
ϕ α α α α

=
+ + + +

, 

            4
4,8

1 2 3 4

p α
ϕ α α α α

=
+ + + +

,             5,0 6,0 7,0 8,0 1p p p p= = = = .                 (4.1) 

 
The mean sojourn time in state iS  is defined as the time of stay in state iS  before 

transiting to any other state is given by 

0
1 1 1

1μ
α β α β κ η η

=
+ + + + + +

, 1
1 1 2 3 4

1μ
δ β β β β

=
+ + + +

,

2
1 2 3 4

1μ
δ β β β β

=
+ + + +

, 3
1 1 2 3 4

1μ
ϕ α α α α

=
+ + + +

, 4
1 2 3 4

1μ
ϕ α α α α

=
+ + + +

, 
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5
1μ
λ

= , 6
1μ
θ

= , 7
1

1μ
θ

= , 8
2

1μ
θ

= .                                    (4.2) 

Hence from the above states the W-function from state i to state j is given by 

( ) 1( ) 1i j i j iW s p sμ −= − ,                                             (4.3) 

where i jp is the probability of transition from state i to state j and iμ  is the mean sojourn 
time. 
 
 

5. MEAN TIME TO SYSTEM FAILURE (MTSF) 
 

The mean-time to system failure is defined as the time until the system is completely 
inoperative. This is accomplished by finding the W-function from the initial state 0S  to 

terminal state{ }1 8,....,S S . Making use of Mason's rule we get. 

0

0

( )( )
( )

N sW s
D s

= .                                                    (5.1) 

where 
{ } { }0 0,1 1,6 1,7 1,8 0,2 2,6 2,7 2,8 0,7( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )N s W s W s W s W s W s W s W s W s W s= + + + + + +

         
{ } { }0,8 0,3 3,6 3,7 3,8 0,4 4,6 4,7 4,8( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )W s W s W s W s W s W s W s W s W s+ + + + + + +

and, 
{0 0,1 1,0 0,2 2,0 0,3 3,0 0,4 4,0( ) 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )D s W s W s W s W s W s W s W s W s= − + + +  

}0,5 5,0( ) ( )W s W s+ . 

where  

( ) 1
, ,( ) 1i j i j iW s p sμ −= − , , 0,1,...,6i j = , i j≠  

The transition probabilities are , ,(0)i j i jW p= . 
The mean sojourn time can be written as follows: 

{ }0 0,1 0,2 0,3 0,4 0,5 0,7 0,8 0
( ) ( ) ( ) ( ) ( ) ( ) ( )

s

d W s W s W s W s W s W s W s
ds

μ
=

= + + + + + + , 

{ }1 1,0 1,6 1,7 1,8 0
( ) ( ) ( ) ( )

s

d W s W s W s W s
ds

μ
=

= + + + , 

{ }2 2,0 2,6 2,7 2,8 0
( ) ( ) ( ) ( )

s

d W s W s W s W s
ds

μ
=

= + + + , 

{ }3 3,0 3,6 3,7 3,8 0
( ) ( ) ( ) ( )

s

d W s W s W s W s
ds

μ
=

= + + + , 
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{ }4 4,0 4,6 4,7 4,8 0
( ) ( ) ( ) ( )

s

d W s W s W s W s
ds

μ
=

= + + + , 

{ }5 5,0 0
( )

s

d W s
ds

μ
=

= , { }6 6,0 0
( )

s

d W s
ds

μ
=

= , { }7 7,0 0
( )

s

d W s
ds

μ
=

= ,  

{ }8 8,0 0
( )

s

d W s
ds

μ
=

= .                                               (5.2) 

Hence, the mean-time to system failure is given by
0

1( ) ( )
s

dMTSF E t W s
p ds =

⎡ ⎤= = ⎢ ⎥⎣ ⎦
. 

where               
[ ] 0

( ) 1
s

p W s
=

= = . 

The mean-time to system failure (MTSF) when the system starts from 0S  is. 

0

0

( ) .NMTSF E t
D

= =                                            (5.3) 

where 
0 0 0,1 1 0,2 2 0,3 3 0,4 4 0,5 5N p p p p pμ μ μ μ μ μ= + + + + + ,  

and, 
{ }0 0,1 1,0 0,2 2,0 0,3 3,0 0,4 4,0 0,5 5,01D p p p p p p p p p p= − + + + + . 

 
 

6. MEAN TIME TO REPAIR / REPLACEMENT (MTTR) 
 
The repair facility of the system is available in states { }6 7 8, , .S S S  
Hence, the mean-time to repair is given by: 

1

1

( )( )
( )

N sMTTR s
D s

= .                                            (6.1) 

where 

( ){ (1 0,1 1,6 0,2 2,6 0,3 3,6 0,4 4,6 6,0 0,1 1,7 0,2 2,7( ) ( )dN s p p p p p p p p W s p p p p
d s

= + + + + +  

) ( ) }0,3 3,7 0,4 4,7 7,0 0,1 1,8 0,2 2,8 0,3 3,8 0,4 4,8 8,0 0
( ) ( )

s
p p p p W s p p p p p p p p W s

=
+ + + + + +  

and, 
{ }1 0,1 1,0 0,2 2,0 0,3 3,0 0,4 4,0 0,5 5,0( ) 1D s p p p p p p p p p p= − + + + + . 

The mean-time to repair (MTTR) is given by:  
1

1

.NMTTR
D

=                                                  (6.2) 

where 



 

 

131M. S. EL-Sherbeny 

 

( ) (1 0,1 1,6 0,2 2,6 0,3 3,6 0,4 4,6 6 0,1 1,7 0,2 2,7 0,3 3,7N p p p p p p p p p p p p p pμ= + + + + + +  

) ( )0,4 4,7 0,7 7 0,1 1,8 0,2 2,8 0,3 3,8 0,4 4,8 0,8 8p p p p p p p p p p p pμ μ+ + + + + + + , 

and,  
{ }1 0,1 1,0 0,2 2,0 0,3 3,0 0,4 4,0 0,5 5,01D p p p p p p p p p p= − + + + + . 

 
6.1. Availability analysis 
 

The system availability ( )A t , is defined as Pr (that the system is in an operating state 
at time t). The steady-state availability is defined as: 

1

1

0

( ) lim ( ) 1
t

NMTSFA A t
MTSF MTTR N

−

→∞

⎡ ⎤
∞ = = = +⎢ ⎥+ ⎣ ⎦

.                       (6.3) 

 
 

7. BUSY-TIME AND IDLE-TIME FOR THE SERVICE FACILITY 
 

When the process is available in states 0S , the repair facility is idle. This path is 
represented by. 

0,1 0,2 0,3 0,4 0,5 0,7 0,8( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )W s W s W s W s W s W s W s W s= + + + + + + .  (7.1) 

Thus, the mean idle-time is 0
1 1 1

1 1
x

μ
α α β β κ η η

= = =
+ + + + + +

.           (7.2) 

The repair facility is available in states { }1 2 3 4 6 7 8, , , , , ,S S S S S S S with repair rates 1δ , δ , 

1ϕ , ϕ , θ , 1θ  and 2θ  respectively. Hence, the equivalent W-function ( )W s is obtained as. 
1 1 11

0,1 1,0 0,2 2,0 0,3 3,0 0,4 4,0
1 1

( ) 1 1 1 1s s s sW s p p p p p p p p
δ δ ϕ ϕ

− − −−⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞= − + − + − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 

( )
11 1

0,5 5,0 0,1 1,6 0,2 2,6 0,3 3,6 0,4 4,6 0,7 7,0
1

1 1 1s s sp p p p p p p p p p p p
λ θ θ

−− − ⎛ ⎞⎛ ⎞ ⎛ ⎞+ − + + + + − + −⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

1

0,8 8,0
2

1 sp p
θ

−
⎛ ⎞

+ −⎜ ⎟
⎝ ⎠

.                                                                                                   (7.3) 

Therefore, the mean busy time of service facility given as  
( )0,1 1 0,2 2 0,3 3 0,4 4 0,5 5 0,1 1,6 0,2 2,6 0,3 3,6 0,4 4,6 6p p p p p p p p p p p p pμ μ μ μ μ μ+ + + + + + + +                                    

0,7 7 0,8 8p p Bμ μ+ + = (say).                                      (7.4) 
Therefore, the Busyness of the service facility may be defined as. 

Busyness = Mean busy-time / (Mean busy-time + Mean idle-time) , 
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Busyness 
1 1

B x B
x BB

x

= =
++

.                                         (7.5) 

 
 

8. SPECIAL CASES 
 
8.1. Study the system without preventive maintenance.  
 
 The mean time to system failure ( 1MTSF ) is given as. 

            
{ }

0 0,1 1 0,2 2 0,3 3 0,4 4
1 1

0,1 1,0 0,2 2,0 0,3 3,0 0,4 4,0

( )
1

p p p p
MTSF E t

p p p p p p p p
μ μ μ μ μ+ + + +

= =
− + + +

.             (8.1) 

 The mean time to repair/replacement ( 1MTTR ) is given as. 

           1
1

2

NMTTR
D

= .                                                       (8.2) 

where 
{ }2 0,1 1,0 0,2 2,0 0,3 3,0 0,4 4,01D p p p p p p p p= − + + +  

 The steady-state availability is given by 

           
1

1
1

0 0,1 1 0,2 2 0,3 3 0,4 4

( ) 1 NA
p p p pμ μ μ μ μ

−
⎡ ⎤

∞ = +⎢ ⎥
+ + + +⎢ ⎥⎣ ⎦

.                (8.3) 

 Busy-Time and Idle-Time for the Service Facility 
When the process is available in states 0S , the repair facility is idle. This path is 

represented as. 
0,1 0,2 0,3 0,4 0,7 0,8( ) ( ) ( ) ( ) ( ) ( ) ( )W s W s W s W s W s W s W s= + + + + + .      (8.4) 

Thus, the mean idle-time is 
0

1 1 1 1

1 1
x

μ
α α β β η η

= = =
+ + + + +

.            (8.5) 

Therefore, the mean busy time of service facility given as 
( )0,1 1 0,2 2 0,3 3 0,4 4 0,1 1,6 0,2 2,6 0,3 3,6 0,4 4,6 6p p p p p p p p p p p pμ μ μ μ μ+ + + + + + +                                    

0,7 7 0,8 8 1p p Bμ μ+ + = (say).                                       (8.6) 

Busyness 1 1 1

1 1
1

1

1 1
B x B

x BB
x

= =
++

.                                   (8.7) 

 
8.2. Study the system without common-cause failure.  
 
The mean time to system failure ( 2MTSF ) is given by 

            0
2 2

0

( ) .NMTSF E t
D

= =                                             (8.8) 
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The mean time to repair ( 2MTTR ) is given by 

           2
2

1

.NMTTR
D

=                                                    (8.9) 

where 
( )2 0,1 1,6 0,2 2,6 0,3 3,6 0,4 4,6 6N p p p p p p p p μ= + + +  

( )0,1 1,8 0,2 2,8 0,3 3,8 0,4 4,8 0,8 8p p p p p p p p p μ+ + + + + . 

 The steady-state availability is given by 

           
1

2
2

0

( ) 1 NA
N

−
⎡ ⎤

∞ = +⎢ ⎥
⎣ ⎦

.                                            (8.10) 

 Busy-Time and Idle-Time for the Service Facility 
When the process is available in states 0S , the repair facility is idle. This path is 

represented by. 
0,1 0,2 0,3 0,4 0,8( ) ( ) ( ) ( ) ( ) ( )W s W s W s W s W s W s= + + + + .             (8.11) 

Thus, the mean idle-time is 0
1 1 1 2

1 1
x

μ
α α β β κ η

= = =
+ + + + +

.        (8.12) 

Therefore, the mean busy time of service facility given by  
( )0,1 1 0,2 2 0,3 3 0,4 4 0,1 1,6 0,2 2,6 0,3 3,6 0,4 4,6 6p p p p p p p p p p p pμ μ μ μ μ+ + + + + + +                                    

0,8 8 2p Bμ+ = (say).                                              (8.13) 

Busyness 2 2 2

2 2
2

2

1 1
B x B

x BB
x

= =
++

.                                 (8.14) 

 
8.3.  Study the system without critical human error.  
 
The mean time to system failure ( 3MTSF ) is given by 

            0
3 3

0

( ) .NMTSF E t
D

= =                                            (8.15) 

The mean time to repair/replacement ( 3MTTR ) is given by 

           3
3

1

.NMTTR
D

=                                                  (8.16) 

where 
( ) (3 0,1 1,6 0,2 2,6 0,3 3,6 0,4 4,6 6 0,1 1,7 0,2 2,7 0,3 3,7N p p p p p p p p p p p p p pμ= + + + + + +   

)0,4 4,7 0,7 7p p p μ+ + . 

 The steady-state availability is given by 
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1

3
3

0

( ) 1 NA
N

−
⎡ ⎤

∞ = +⎢ ⎥
⎣ ⎦

.                                           (8.17) 

Busy-Time and Idle-Time for the Service Facility 
When the process is available in states 0S , the repair facility is idle. This path is 
represented as. 

0,1 0,2 0,3 0,4 0,5 0,7( ) ( ) ( ) ( ) ( ) ( ) ( )W s W s W s W s W s W s W s= + + + + + .     (8.18) 

Thus, the mean idle-time is 0
1 1 3

1 1
x

μ
α α β β κ η

= = =
+ + + + +

.          (8.19) 

Therefore, the mean busy time of service facility given by.  
( )0,1 1 0,2 2 0,3 3 0,4 4 0,5 5 0,1 1,6 0,2 2,6 0,3 3,6 0,4 4,6 6p p p p p p p p p p p p pμ μ μ μ μ μ+ + + + + + + +                                    

0,7 7 3p Bμ+ = (say).                                              (8.20) 

Busyness 3 3 3

3 3
3

3

1 1
B x B

x BB
x

= =
++

.                                  (8.21) 

 
8.4. Study the system without preventive maintenance, common-cause failure, 
critical human error,  non- critical human error and one  type of repar "i.e 1π = " . 
all results of Ref. (Goel and Shrivastava, 1992) are deduced.  
 
8.5. Study the system without common-cause failure, critical human error,  non- 
critical human error and one  type of repar "i.e 1π = " . 
 we have the results of Ref. (Goel and Shrivastava, 1992). 
 
8.6. Study the system without preventive maintenance, critical human error, non- 
critical human error and one  type of repar "i.e 1π = " . 
 all results of Ref. (Sridharan and Kalyani, 2002) are deduced. 
 
 

9. COMPARISON BETWEEN MTSF AND ( )A ∞  UNDER EFFECT THE 
PREVENTIVE MAINTENANCE(PM) 

 
The purpose of this section study the effect of PM on the system. The following numerical 
results are obtained by considering the following system parameters: 
We fix 1 0.1α = , 2 0.9α = , 3 0.01α = , 4 0.02α = , 1 0.2β = , 2 0.8β = , 3 0.03β = , 

4 0.05β = , 0.01η = , 1 0.05η = , 0.06θ = ,  1 0.02θ = , 2 0.04θ = , 0.2δ = , 1 0.4δ = , 

0.3ϕ = , 1 0.5ϕ = , 0.7π = ,  0.3π = and vary the values of α  and β from 0.1 to 0.8 
( see Tables 9.1-9.4). 
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These curves are shown in Figures (10.5-10.8). From these figures we conclude that 
MTSF and the steady-state availability for system (with PM) are always above as 
compared to those for system (without PM) which implies that the preventive maintenance 
"PM"  leads to an improvement in overall system performance.  

In Figures (10.1-10.4) show that, the MTSF and ( )A ∞  are increases when the time 
for taking a unit into PM (κ ) greater then the PM time rate ( )λ i.e. κ λ> . 
 

Table 9.1. Comparison of the mean time to system failure (MTSF) by using four cases of PM. 
  MTSF   
α  0.2 0.9λ κ= < =  0.9λ κ= =  0.9 0.2λ κ= > = without PM 
0.1 7.97779 3.46542 2.46267 1.00733 
0.2 5.68832 2.56662 1.87291 0.92899 
0.3 5.31039 2.4918 1.86545 0.977804 
0.4 6.3694 2.88621 2.11217 0.997539 
0.5 5.98479 2.74771 2.02835 0.994778 
0.6 5.65094 2.62748 1.9556 0.992221 
0.7 4.72635 2.2529 1.70324 0.94509 
0.8 5.10003 2.42909 1.83555 0.987639 

 
Table 9.2. Comparison of the mean time to system failure (MTSF) by using four cases of PM. 

  MTSF   
β  0.2 0.9λ κ= < =  0.9λ κ= =  0.9 0.2λ κ= > = without PM 
0.1 6.77572 2.94403 2.09254 0.931478 
0.2 5.40334 2.39584 1.7275 0.866463 
0.3 4.77925 2.14849 1.56388 0.833203 
0.4 5.55351 2.49252 1.8123 0.905347 
0.5 5.2485 2.37985 1.74237 0.897896 
0.6 4.97955 2.28049 1.6807 0.890965 
0.7 4.47105 2.07521 1.5428 0.860533 
0.8 4.52697 2.1133 1.57693 0.878461 

 
Table 9.3. Comparison of the availability by using four cases of PM. 

  ( )A ∞    

α  0.2 0.9λ κ= < =  0.9λ κ= =  0.9 0.2λ κ= > = without PM 
0.1 0.378198 0.198747 0.143839 0.126741 
0.2 0.305672 0.157832 0.116004 0.103279 
0.3 0.272173 0.140713 0.104781 0.0939566 
0.4 0.331142 0.172924 0.127035 0.112974 
0.5 0.310499 0.161902 0.119745 0.10691 
0.6 0.292671 0.15268 0.1137 0.101895 
0.7 0.248966 0.130327 0.0986868 0.0892196 
0.8 0.263432 0.138121 0.138121 0.0940867 
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Table 9.4. Comparison of the availability by using four cases of PM. 
  ( )A ∞   
β  0.2 0.9λ κ= < =  0.9λ κ= =  0.9 0.2λ κ= > = without PM 
0.1 0.272173 0.140713 0.104781 0.0939566 
0.2 0.232532 0.119034 0.0890986 0.0801682 
0.3 0.211398 0.108443 0.0818043 0.0738984 
0.4 0.236996 0.123125 0.0930462 0.0840695 
0.5 0.22752 0.118546 0.0900187 0.0815258 
0.6 0.218912 0.114442 0.0873151 0.0792566 
0.7 0.20199 0.105675 0.0810269 0.0737332 
0.8 0.203861 0.107392 0.0826917 0.0753813 

 
 

10. CONTRIBUTIONS AND CONCLUDING REMARKS 
 
In this paper, GERT is used to derive some reliability measures of a of a non-identical 
two-unit parallel system. Some previous results are deduced as a special case of our model. 
The effect of PM to the measures of the system is studied graphically. Finally, for 
achieving high reliability of the system, we recommend adding PM to the model and 
κ λ> because of its positive effect on the model as shown in. 
 

     
 

Figure 10.1.                                                        Figure 10. 2. 
 

    
  

Figure 10. 3.                                                       Figure 10. 4. 

0.2 0.4 0.6 0.8

0.125

0.15

0.175

0.2

0.225

0.25

0.275
κ λ>

κ λ<
κ λ=

[ ]0.1, 0.8β ∈

A vailability

[ ]0.1,0.8α∈
0.2 0.4 0.6 0.8

0.15

0.2

0.25

0.3

0.35

0.4
κ λ>

κ λ=

κ λ<

Availability

0.2 0.4 0.6 0.8

3

4

5

6

7

[ ]0.1,0.8β ∈

MTSF κ λ>

κ λ=

κ λ<

0.2 0.4 0.6 0.8

3

4

5

6

7

8

[ ]0.1,0.8α ∈

MTSF
κ λ>

κ λ=

κ λ<



 

 

137M. S. EL-Sherbeny 

 

     
   

Figure 10. 5.                                                     Figure 10. 6. 
  

 

   
 

        Figure 10. 7.                                                     Figure 10. 8. 
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