• Title/Summary/Keyword: Incubation Temperature

Search Result 838, Processing Time 0.028 seconds

Observations on Some of the Mycelial Growth and Pigmentation Characteristics of Cordyceps militaris Isolates

  • Shrestha, Bhushan;Lee, Won-Ho;Han, Sang-Kuk;Sung, Jae-Mo
    • Mycobiology
    • /
    • v.34 no.2
    • /
    • pp.83-91
    • /
    • 2006
  • Characteristic growth patterns of Cordyceps militaris isolates on various media, under varying light conditions and at varying incubation periods were examined. Light was found to be the most critical single factor in determining the density, texture, and pigmentation of the mycelial culture of the fungus. However, under the light condition, the degree of pigmentation and mycelial density were found to be affected by the incubation period and type of medium. Irrespective of the variations in medium type or incubation period, there was no pigmentation of the mycelium under dark condition. Radial growth of the mycelium was faster under dark incubation rather than under light incubation. Abundant mycelial density and darkest pigmentation of C. militaris isolates were produced in nutritionally rich media like SDAY, SMAY and CZYA, suggesting that these media may fulfill all the requirements for vegetative growth of the fungus. Growth characteristics of C. militaris isolates could be easily observed by the simple agar culture method, which would be useful to characterize the phenotypic characteristics of large number of pure cultures of the fungus under given conditions of growth factors such as medium, light and temperature.

Effect of Saccharides and Incubation Temperature on pH and Total Acidity of Fermented Black Tea with Tea Fungus (배양액 제조에 사용된 당의 종류와 농도 및 배양 온도가 Tea Fungus발효 홍차의 pH 변화와 Total Acids생성에 미치는 영향)

  • Choi, Mi-Ae;Kim, Jeong-Ok;Choi, Kyung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.405-410
    • /
    • 1996
  • The fermented black tea with tea fungus (FBTF) known to cure various diseases was prepared by culturing tea fungus biomass in black tae with different kinds (sucrose, glucose, fructose and corn syrup) and concentrations (10-60% m/v) of saccharides. pH changes and total acid production of FBTF were investigated during 14 dats incubation at $5-45^{\circ}C$ The patterns of acid production in sucrose and fructose black tea solution were similar each other, and those in glucose and corn syrup black tea solution were similar each other showing that tea fungus biomass utilizes fructose than glucose more efficiently. The optimum incubation temperature for the formation and growth of tea fungus Biomass, and the acid production was $30^{\circ}C$ Low contents of total aids (0.1%-0.2%) were produced in 20% of higher concentrations of sucrose and fructose black tea solution, while 1.8% and 0.68% were produced in the 10% of sucrose and fructose black tea solutions, respectively, pH of FBTF dropped to 2.74-3.56 after 2 days of incubation of all the culture solution and Kept this level to 14 days incubation.

  • PDF

Effects of controlled environmental changes on the mineralization of soil organic matter

  • Choi, In-Young;Nguyen, Hang Vo-Minh;Choi, Jung Hyun
    • Environmental Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.347-355
    • /
    • 2017
  • This study investigated how the combined changes in environmental conditions and nitrogen (N) deposition influence the mineralization processes and carbon (C) dynamics of wetland soil. For this objective, we conducted a growth chamber experiment to examine the effects of combined changes in environmental conditions and N deposition on the anaerobic decomposition of organic carbon and the emission of greenhouse gases from wetland soil. A chamber with elevated $CO_2$ and temperature showed almost twice the reduction of total decomposition rate compared to the chamber with ambient atmospheric conditions. In addition, $CO_2$ fluxes decreased during the incubation under the conditions of ambient $CO_2$ and temperature. The decrease in anaerobic microbial metabolism resulted from the presence of vegetation, which influences the litter quality of soils. This can be supported by the increase in C/N ratio over the experimental duration. Principle component analysis results demonstrated the opposite locations of loadings for the cases at the initial time and after three months of incubation, which indicates a reduction in the decomposition rate and an increasing C/N ratio during the incubation. From the distribution between the decomposition rate and gas fluxes, we concluded that anaerobic decomposition rates do not have a significantly positive relationship with the fluxes of greenhouse gas emissions from the soil.

Nitrogen Mineralization of Cereal Straws and Vetch in Paddy Soil by Test Tube Analysis

  • Cho, Young-Son;Lee, Byong-Zhin;Choe, Zhin-Ryong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.2
    • /
    • pp.102-105
    • /
    • 1999
  • Mineralization of organic N is an important factor in determining the appropriate rate of organic matter application to paddy fields. A kinetic analysis was conducted for nitrogen mineralization of rice, barley, Chinese milk Ovetch (Astragalus sinicus L.; MV) and narrow leaf vetch straw in paddy soil. Nitrogen immobilization occurred rapidly and its rate increased in straw with high C/N ratio. The amount of nitrogen mineralization was rapid in the first year of rice-vetch cropping system. The rate constant (K) depended on the C/N ratio of organic matter. Mineralization of straw increased at high temperature. The amount of available N increment resulted in fast mineralization of straw, especially in rice and barley straw. Chinese milk vetch had the greatest mineralization rate at all temperatures and fertilization levels followed by narrow-leaf vetch. However, rice and barley straws with high C/N ratio immobilized the soil N at the initial incubation duration. Chinese milk vetch or narrow leaf vetch was not effectively mineralized in mixed treatments with rice or barley straw. The mineralization rate of organic matter was mostly affected by the C/N ratio of straw and temperature of incubation. Organic matter with low C/N ratio should be recommended to avoid the immobilization of soil N and the increasing mineralization rate of straw.

  • PDF

Changing Transmission Pattern of Plasmodium vivax Malaria in the Republic of Korea: Relationship with Climate Change

  • Park, Jae-Won
    • Environmental Analysis Health and Toxicology
    • /
    • v.26
    • /
    • pp.1.1-1.6
    • /
    • 2011
  • Plasmodium vivax malaria has occurred annually in the Republic of Korea (ROK) since its re-emergence in 1993. P. vivax malaria in ROK has been strongly influenced by infected mosquitoes originating from the Democratic People's Republic of Korea. Korean P. vivax malaria has shown typical characteristics of unstable malaria transmitted only during the summer season, and displays short and long incubation periods. The changing pattern of the transmission period can be predicted by analyzing the seasonal characteristics of early primary attack cases with a short incubation period. Such cases began to gradually occur earlier in the 1990s after the re-emergence. Most of the malaria cases after mid-August are presumed to be early primary attack, short incubation period cases. Only primary transmission was possible until the early 2000s, whereas up to fourth or fifth transmission occurred in the mid-2000s. The results indicate that the length of transmission period has been gradually extending, which may be ascribed to a climate change-mediated temperature rise. Malaria and climate data should be integrated to analyze and predict the influence of climate change on malaria occurrence in ROK.

Production of Fungal Lipid (Part IV) Effect of Cultural Conditions on the Growth and Lipid Accumulation of Mucor plumbeus (곰팡이 유지 생산에 관한 연구 (제 4 보) 배양조건이 Mucor Plumbeus의 유지 생산에 미치는 영향에 대하여)

  • 유진영;이형춘;신동화;서기봉
    • Microbiology and Biotechnology Letters
    • /
    • v.10 no.2
    • /
    • pp.87-93
    • /
    • 1982
  • The cultural conditions of Mucor plumbeus FRI 0007 were investigated for the maximum production of felt and lipid. It was found that the lower the pH and the higher the incubation temperature, the higher accumulation of the felt and lipid. Shake culture rendered higher lipid accumulation and lower felt accumulation than static culture. Maximum production of felt and lipid content were 47.8 g/$\ell$ and 50.73%, respectively, when the organisms were static-cultured at a temperature of 37$^{\circ}C$ and pH of 3.5 for 25 days latroscan thinchrographic analysis showed that the higher amount of triglyceride was obtained when static-cultured at a low pH. Fatty acid composition of the microbial lipid was affected by the incubation temperature, types of nitrogen source and speed of agitation: lower degree of saturation was observed as the incubation temperature decreased and the speed of agitation increased. Fatty acids of monoglyceride and diglyceride were mainly palmitic and oleic acids and those of triglycerides were mainly palmitic, oleic acids.

  • PDF

Effects of incubation temperature on the embryonic viability and hatching time in Russian sturgeon (Acipenser gueldenstaedtii)

  • Kim, Eun Jeong;Park, Chulhong;Nam, Yoon Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.21 no.9
    • /
    • pp.23.1-23.8
    • /
    • 2018
  • Background: Russian sturgeon (Acipenser gueldenstaedtii) is an emerging candidate species in the Korean aquaculture domain owing to its highly valued caviar. Although the embryonic development of this species was previously described, the complete image data on the morphological differentiation of developing embryos have not been yet fully available. Further, with the viewpoint of larval production in hatchery, the effects of temperature on embryonic viability and the temporal window of hatching event have not been extensively studied. Hence, the objective of this study was to provide a complete set of photographic image data on the embryogenesis and also to examine the effects of incubation temperatures on embryonic viability and hatching event in farm-bred Russian sturgeon. Results: Typical characteristics of embryonic development including uneven, holoblastic cleavages with unequal blastomeres, followed by the formation of germ layer, neurulation, and organogenesis until hatching, were documented. Under different temperature conditions (12, 16, or $20^{\circ}C$), viability of embryos incubated at $12^{\circ}C$ was significantly lower as relative to those of 16 and $20^{\circ}C$ incubated embryos. Hatchability of embryos was higher, and the timing of hatching event was more synchronized at $20^{\circ}C$ than at 12 and $16^{\circ}C$. Conclusion: Data from this study suggest that the incubation of Russian sturgeon embryos at $20^{\circ}C$ would be desirable in the hatchery practice with respect to the good hatchability of embryos and the synchronization of hatching events. Additionally, the updated image data for complete embryonic development could be a useful reference guide for not only developmental researches but also artificial propagation of Russian sturgeon in farms.

Effect of Soil Respiration on Light Fraction-C and N Availability in Soil Applied with Organic Matter

  • Ko, Byong-Gu;Lee, Chang-Hoon;Kim, Myung-Sook;Kim, Gun-Yeob;Park, Seong-Jin;Yun, Sun-Gang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.510-516
    • /
    • 2016
  • Soil respiration has been recognized as a key factor of the change of organic matter and fertility due to the carbon and nitrogen mineralization. In this study, we evaluated the effect of soil respiration on the light fraction-C and inorganic N content depending on temperature in soil applied with organic matter. Soil respiration was calculated by using total $CO_2$ flux released from soil applied with $2Mg\;ha^{-1}$ of rice straw compost and rye for 8 weeks incubation at 15, 25, $35^{\circ}C$ under incubation test. After incubation test, light fraction and inorganic N content were investigated. Rye application dramatically increased soil respiration with increasing temperature. $Q_{10}$ value of rye application was 1.69, which was higher 27% than that of rice straw compost application. Light-C and $NO_3-N$ contents were negatively correlated to soil respiration. Light-C in rye application more decreased than that in rice straw compost with temperature levels. These results indicate that temperature sensitivity of soil respiration could affect soil organic mater content and N availability in soil due to carbon availability. Also, light fraction would be useful indicator to evaluate decomposition rate of organic matter in soil under a short-term test.

Effect of Antioxidant Preservative on Cold Protection Ability of Low Grade Riverine Buffalo (Bubalus bubalis) Bull Spermatozoa

  • Pankaj, Prabhat Kumar;Raina, V.S.;Roy, B.;Mohanty, T.K.;Mishra, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.5
    • /
    • pp.626-635
    • /
    • 2009
  • An experiment was conducted to investigate the effect of Butylated Hydroxy Anisole (BHA), Butylated Hydroxy Toluene (BHT), Pentoxifylline (PTX), Theophylline (TPY) and Theobromine (TBR) on cold protection ability of Murrah buffalo semen at room ($22-25^{\circ}C$) and refrigerated temperature ($4-7^{\circ}C$). Each semen sample was divided into six parts of equal volume and sperm concentration; the first was kept as a control and the remaining five were treated with BHA, BHT, PTX, TPY or TBR. Sperm motility, abnormal spermatozoa, live-dead count, hypo-osmotic swelling and acrosomal integrity were studied at room and refrigerated temperature for various incubation periods viz.; 0, 4, 8, 12 and 24 h at room and 0, 12, 24, 36, 48, 60 and 72 h at refrigerated temperature. Significant improvement in sperm motility, live-dead count, hypo-osmotic swelling and acrosomal integrity were observed in BHT, PTX and TPY fortified extender at room and refrigerated temperature for various incubation periods. From the present study it could be concluded that cold protection ability of buffalo semen can be improved through the addition of BHT followed by PTX and TPY.

Direct Deposition of high quality nanocrystalline Silicon Films by Catalytic CVD at Low Temperatures (<200 K)

  • Kim, Tae-Hwan;Lee, Kyoung-Min;Hwang, Jae-Dam;Hong, Wan-Shick
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.261-263
    • /
    • 2008
  • We attempted modulation of the hydrogen dilution ratio in a Cat-CVD system to achieve both the minimal incubation layer and the high throughput. We obtained the incubation layer thickness of 3 nm, and were able to grow a 200 nm-thick film having a 70 % crystallinity in 18 minutes.

  • PDF