• 제목/요약/키워드: Incremental Sheet Forming

검색결과 67건 처리시간 0.028초

점진적 롤 성형공정을 이용한 이중곡률의 금속판재 제작 및 정밀성형을 위한 형상 예측 (Manufacture of Doubly Curved Sheet Metals Using the Incremental Roll Forming Process and Prediction of Formed Shapes for Precision Forming)

  • 윤석준;양동열
    • 한국정밀공학회지
    • /
    • 제21권9호
    • /
    • pp.95-102
    • /
    • 2004
  • A flexible incremental roll forming process has been developed by adopting the advantages of the incremental forming process and the roll forming process: i.e., inherent flexibility of the incremental forming process and continuous bending deformation of the roll forming process. It has an adjustable roll set as a forming tool composed of one upper center roll and two pairs of lower support rolls, which plays a key role during forming process. Through the experiments based on the various combinations of process parameters, it is shown that the incremental roll forming process is so effective as to manufacture various doubly curved sheet metals including concave-convex combination shapes in which there exists a line of inflection. The proposed relationship of the experimental parameters and the radius of curvature of the formed sheet boundary is found to be useful in prediction and control of the final shape.

점진성형에서 형상 정밀도에 영향을 미치는 공정 변수 (Effective Process Parameters on Shape Dimensional Accuracy in Incremental Sheet Metal Forming)

  • 강재관;정종윤
    • 산업경영시스템학회지
    • /
    • 제38권4호
    • /
    • pp.177-183
    • /
    • 2015
  • Incremental sheet metal forming is a manufacturing process to produce thin parts using sheet metals by a series of small incremental deformation. The process rarely needs dedicated dies and molds, thus, preparation time for the process is relatively short as to be compared to conventional metal forming. Spring back in sheet metal working is very common, which causes critical errors in dimensions. Incremental sheet metal forming is not fully investigated yet. Hence, incremental sheet metal forming frequently produces inaccurate parts. This paper proposes a method to minimize dimensional errors to improve shape accuracy of products manufactured by incremental forming. This study conducts experiments using an exclusive incremental forming machine and the material for these experiments are sheets of aluminum AL1015. This research defines a process parameter and selects a few factors for the experiments. The parameters employed in this paper are tool feed rate, tool diameter, step depth, material thickness, forming method, dies applied, and tool path method. In addition, their levels for each factor are determined. The plan of the experiments is designed using orthogonal array $L_8$ ($2^7$) which requires minimum number of experiments. Based on the measurements, dimensional errors are collected both on the tool contacted surfaces and on the non-contacted surfaces. The distances between the formed surfaces and the CAD models are scanned and recorded using a commercial software product. These collected data are statistically analyzed and ANOVAs (analysis of variances) are drawn up. From the ANOVAs, this paper concludes that the process parameters of tool diameter, forming depth, and forming method are the significant factors to reduce the errors on the tool contacted surface. On the other hand, the experimental factors of forming method and dies applied are the significant factors on the non-contacted surface. However, the negative forming method always produces better accuracy than the positive forming method.

판재의 점진성형법에 대한 기초연구 (A Basic Study on Incremental Forming Method for Sheet Metal)

  • 심명섭;박종진
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 추계학술대회 논문집
    • /
    • pp.128-131
    • /
    • 2000
  • The technology of incremental forming has drawn attention for small-batch production of sheet metal components. In the present investigation a forming tool containing a freely-rotating ball was developed and applied to forming experiments. Deformation characteristics including crack occurred during forming with this tool was examined for full annealed Al1050 sheet. The finite element analysis was successfully applied to this special type of forming process, and provided results that agree well with the measurements.

  • PDF

점진적 롤 성형 공정을 이용한 이중 곡률을 갖는 일반적인 사각형 시편의 성형 방법 (Forming Method to Manufacture a Doubly Curved General Quadrilateral Sheet Metal Using the Incremental Roll Forming Process)

  • 윤석준;양동열
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.978-981
    • /
    • 2005
  • In order to manufacture a doubly curved sheet metal effectively, a flexible incremental roll forming process has been developed by adopting the advantages of the incremental forming process and the roll forming process by combining inherent flexibility of the incremental forming process and continuous deformation of the roll forming process. The forming method has been further enhanced to form general quadrilateral blanks (including a square, a rectangle, a symmetrical trapezoid and an asymmetrical trapezoid, etc.) into doubly curved shapes by controlling the forming paths developed by various experiments.

  • PDF

AZ31 합금 판재의 온간 점진 성형에 관한 연구 (A Study on Warm Incremental Forming of AZ31 Alloy Sheet)

  • 김상우;이영선;권용남;이정환
    • 소성∙가공
    • /
    • 제17권5호
    • /
    • pp.373-379
    • /
    • 2008
  • A fundamental study on warm incremental forming of a magnesium alloy sheet has been carried out. In order to enhance the incremental formability of the magnesium alloy sheet, a local heating device was newly designed and manufactured. Through the incremental forming tests of AZ31 under various forming conditions, the effects of process parameters such as the temperature, feeding depth per cycle, and inclination angle on the incremental formability of AZ31 were investigated. In addition, conventional FLDs at elevated temperatures were constructed experimentally and applied to predict the forming failure.

인크리멘탈 성형을 이용한 마그네슘 합금 판재의 성형변수에 관한 연구 (A parametric Study in Incremental Forming of Magnesium Alloy Sheet)

  • 박진기;유봉선;김영석
    • 소성∙가공
    • /
    • 제17권6호
    • /
    • pp.412-419
    • /
    • 2008
  • Using lightweight materials in vehicle manufacturing in order to reduce energy consumption is one of the most effective approach to decrease pollutant emissions. As a lightweight material, magnesium is increasingly employed in automotive parts. However, because of its hexagonal closed-packed(HCP) crystal structure, in which only the basal plane can move, the magnesium alloy sheets show low ductility and formability at room temperature. Thus the press forming of magnesium alloy sheets has been performed at elevated temperature within range of $200^{\circ}C{\sim}250^{\circ}C$. Here we try the possibility of sheet metal forming at room temperature by adopting incremental forming technique with rotating tool, which is so called as rotational-incremental sheet forming(RISF). In this rotational-incremental sheet forming the spindle tool rotates on the surface of the sheet metal and moves incrementally with small pitch to fit the sheet metal on the desired shape. There are various variables defining the formability of sheet metals in the incremental forming such as speed of spindle, pitch size, lubricants, etc. In this study, we clarified the effects of spindle speed and pitch size upon formability of magnesium alloy sheets at room temperature. In case of 0.2, 0.3 and 0.4mm of pitch size with hemispherical rotating tool of 6.0mm radius, the maximum temperature at contact area between rotating tool and sheet metal were $119.2^{\circ}C,\;130.8^{\circ}C,\;and\;177.3^{\circ}C$. Also in case of 300, 500, and 700rpm of spindle speed, the maximum temperature at the contact area were $109.7^{\circ}C,\;130.8^{\circ}C\;and\;189.8^{\circ}C$.

AL1050 소재의 양·음각 점진성형 공법간 성형 정밀도 비교 (Forming Accuracy Comparison Between Positive and Negative Incremental Forming Al 1050)

  • 이경부;오현만;강재관
    • 한국생산제조학회지
    • /
    • 제22권5호
    • /
    • pp.800-805
    • /
    • 2013
  • Incremental forming of sheet metal is a modern method of forming sheet metal, where parts can be formed without the use of dedicated dies. Existing experimental configurations for incremental forming can be broadly classified into two categories, i.e., negative and positive forming. In this paper, forming qualities such as shape accuracy and surface roughness of Al 1050 material were discussed for different forming methods. The formed and the corresponding opposing surfaces were measured with a three-dimensional scanner and a surface roughness tester. It was found that in terms of shape accuracy, the best opposing surface was obtained with positive forming, whereas the worst formed surface was obtained with negative forming; furthermore, the opposing surface is always better than the formed surface, regardless of the forming method used.

점진성형공구 코팅처리 및 소재에 따른 성형품 표면품질 분석 (Surface Quality of Products according to the Material and Coating Condition of the Forming Tool in Incremental Sheet Forming)

  • 윤형원;박남수
    • 소성∙가공
    • /
    • 제32권6호
    • /
    • pp.360-366
    • /
    • 2023
  • This study is concerned with the surface quality of products according to the material and coating condition of the forming tool in incremental sheet forming. Three forming tools, SKD11 with and without diamond-like-coating (DLC) and polymer tool tip, were used to form conical and pyramidal geometries to take into account the influence of friction between the forming tool and the sheet on the surface quality including geometric accuracy of deformed samples. Each test was performed using SUS304 with a thickness of 0.4 mm according to different incremental depths per lap of 0.5 mm, 1.0 mm, and 1.5 mm for the contour tool path, considering the increase in normal force which is associated with the frictional behavior during local deformation. The surface quality was then investigated through surface roughness measured with KEYENCE VR-6000 and relative strain distribution including deformed shape analyzed with ARGUS which is a non-contact optical strain measurement system. Differences between 3D CAD surfaces and captured geometry from experiments were evaluated to compare the effect of friction on geometric accuracy. From comparisons of experimental results, it was revealed that the polymer-based tool tip can improve surface quality and geometric accuracy by reducing the undesired material flow due to local friction in the increment sheet forming process.

회전 인크리멘탈 성형을 이용한 마그네슘 합금 판재의 성형한계 연구 (A Study of forming limit on rotational incremental forming of magnesium alloy sheet)

  • 박진기;배문기;유봉선;김영석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.456-461
    • /
    • 2008
  • Being a lightweight material, magnesium is increasingly employed in automotive parts. However, because of its hexagonal closed-packed (HCP) crystal structure, in which only the basal plane can move, the magnesium alloy sheets show low ductility and formability at room temperature. Thus the press forming of magnesium alloy sheets has been performed at elevated temperature within range of $200^{\circ}C{\sim}250^{\circ}C$. However, we confirmed that using rotational incremental forming magnesium alloy sheets were formed without any heating at previous study. In this study, at the forming of square cup using rotational incremental sheet forming, the strain distributions were obtained and it was compared with forming limit curve at neck (FLCN). Also, forming limit curves at fracture (FLCF) of magnesium alloy sheets were obtained at elevated temperature and it was compared with the strain distribution of square cup of magnesium alloy sheet. In this study, we confirmed that conventional forming limit curves can not predict rotational incremental forming.

  • PDF

국부가열장치를 이용한 온간 무금형 점진 성형 (Warm Incremental Forming with Local Heating Apparatus)

  • 김상우;이영선;권용남;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.349-353
    • /
    • 2008
  • A fundamental study on warm incremental forming of a magnesium alloy sheet has been carried out. In order to enhance the incremental formability of the magnesium alloy sheet, a local heating device was newly designed and manufactured. Through the incremental forming tests of AZ31 under various forming conditions, the effects of process parameters such as the temperature, feeding depth per cycle, and inclination angle on the incremental formability of AZ31 were investigated. In addition, conventional FLDs at elevated temperatures were constructed experimentally and applied to predict the forming failure.

  • PDF